Industries
Services

Pharmaceutical & Biopharmaceutical Development Services

EAG brings unparalleled expertise to the development and commercialization of small molecule drugs, biopharmaceuticals, antibody-drug conjugates (ADCs), drug-device combination…

EAG brings unparalleled expertise to the development and commercialization of small molecule drugs, biopharmaceuticals, antibody-drug conjugates (ADCs), drug-device combination products and other therapies. From designing IND-enabling studies to delivering full CMC analytical and QC support, we join your R&D team as a true partner. EAG scientists take time to understand both your commercial goals and the unique characteristics of your compound. We provide expert guidance to balance regulatory expectations with expediency and cost, and approach technical challenges with flexibility and resolve.

Materials Testing & Analysis

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity…

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity of analytical techniques of technical ingenuity of EAG. From polymers to composites, thin films to superalloys—we know how to leverage materials sciences to gain a competitive edge. At EAG, we don’t just perform testing, we drive commercial success—through thoughtfully designed investigations, technically superior analyses and expert interpretation of data.

Environmental Testing & Regulatory Compliance

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of…

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of active ingredients and formulations—from pesticides and pharmaceuticals to industrial chemicals and consumer products. Whether you are exploring “what if” scenarios, registering a new active ingredient or formulation, responding to a data call-in or seeking to understand the latest guidance, turn to EAG for technical excellence, sound advice, GLP-compliant study execution and expert interpretation.

Microelectronics Test & Engineering

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human…

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human life. In the world of technology, innovation and continuous improvement are imperatives—and being able to quickly and reliably test, debug, diagnose failures and take corrective action can make the difference between a doomed product launch and building a successful global brand. EAG offers you the world’s largest and most diverse collection of specialized analytical instrumentation, capacity to perform a variety of microelectronic tests in parallel, and the multi-disciplinary expertise required to draw true insight from data.

Custom Synthesis & Radiolabeling

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical…

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical and related industries than we do. From 14C and 3H radiolabeled clinical trial materials synthesized under cGMP, to stable-labeled active ingredients for metabolism and environmental fate/effects testing, turn to EAG. We have extensive experience with multi-step and other complex synthesis projects, and our comprehensive, in-house analytical services ensure quick turnaround of purity and structural confirmation.

Crop Biotechnology & Development

EAG combines biotechnology and protein characterization expertise with more than 50 years' experience analyzing chemical compounds in plant and environmental matrices to address…

EAG combines biotechnology and protein characterization expertise with more than 50 years’ experience analyzing chemical compounds in plant and environmental matrices to address the growing needs of the biotechnology crop industry. We offer a wide range of techniques required to fully characterize the event insertion and expressed proteins, as well as the various studies required to confirm the food, feed and environmental safety of products that represent the trait. From early-stage protein confirmation to GLP-compliant EDSP and allergenicity testing, we help you make faster, more informed development decisions and comply with evolving global regulations of genetically engineered crops.

Litigation Support & Expert Testimony

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes,…

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes, turn to EAG. We’ve provided technical consulting, analysis and expert testimony for hundreds of cases involving the aerospace, transportation, medical device, electronics, industrial and consumer product industries. Our team of experts understands the legal process and your need for responsiveness, effective communication, scientifically defensible opinion and confidentiality. From professional consulting to data review to trial preparation and expert witness testimony, ask EAG.

Techniques

Chromatography

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer…

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer look at the purity of your pharmaceutical or need to better understand an agrochemical’s components, EAG has the expertise to separate and evaluate any compound.

Mass Spectrometry

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and…

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and molecules in almost any pure or complex material to detect and obtain mass spectra of the components. We rely on decades of experience in mass spectrometry to provide our clients with precise analyses and the best detection limits.

Imaging

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images…

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images for various industries, from consumer electronics to nanotechnology. Using state-of-the-art equipment and innovative techniques, we conduct expert imaging to aid in failure analysis, dimensional analysis, process characterization, particle identification and more. If you want to investigate a material with angstrom scale resolution, you can count on EAG to get the job done quickly and precisely.

Spectroscopy

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and…

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and methodology with cutting-edge technology to analyze your organic, inorganic, metallic and composite materials for identification, compositional, structural and contaminant information. Whether you need expert spectroscopic analysis to improve your production process or to surmount a technical challenge, EAG is up to the task.

Physical/Chemical Characterization

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be…

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be done right, you can count on EAG. We offer a range of adaptable techniques and innovative methods to evaluate the physical and chemical characteristics of any compound. Our highly precise testing and analytical services will improve your production process, expedite R&D and help you conquer any technical challenge.

About

A Global Scientific Services Company

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and…

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and business. The scientists and engineers of EAG apply multi-disciplinary expertise, advanced analytical techniques and “we know how” resolve to answer complex questions that drive commerce around the world.

Our Customers

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and…

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and highly regulated industries. We help our customers innovate new and improved products, investigate manufacturing problems, perform advanced analyses to determine safety, efficacy and regulatory compliance, and protect their brands.

Our Company Culture

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win…

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win together.” Across all of our 20+ locations, you will find a true passion for science and the power of science to improve the world we live in. Hear what some of our ~1200 scientists, engineers and support personnel say about what it means to be part of EAG Laboratories.

Careers

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you.…

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you. Browse current openings now, and re-visit our careers page often.

How do you find great resources?

Auger Tutorial: Theory

Auger electron spectroscopy (AES) identifies elemental compositions of surfaces by measuring the energies of Auger electrons. Auger electron emission is stimulated by bombarding the sample with an electron beam. The Auger electron energies are characteristic of the elements from which the electrons come. Auger electron spectroscopy is a widespread method for analysis of surfaces, thin films, and interfaces.

Although both are dated, two good reference book are:

  • Photoelectron and Auger Spectroscopy, T. A. Carlson (Plenum Press, New York, 1975)
  • Methods of Surface Analysis, A. W. Czanderna, ed. (Elsevier, New York, 1975)
The Auger Process

The basic Auger process starts with removal of an inner shell atomic electron to form a vacancy. Several processes are capable of producing the vacancy, but bombardment with an electron beam is the most common. The inner shell vacancy is filled by a second atomic electron from a higher shell. Energy must be simultaneously released. A third electron, the Auger electron, escapes carrying the excess energy in a radiationless process. The process of an excited ion decaying into a doubly charged ion by ejection of an electron is called the Auger process. Alternatively, an X-ray photon removes the energy. For low atomic number elements, the most probable transitions occur when a K-level electron is ejected by the primary beam, an L-level electron drops into the vacancy, and another L-level electron is ejected. Higher atomic number elements have LMM and MNN transitions that are more probable than KLL.

The figure illustrates two competing paths for energy dissipation with titanium as an example. The illustrated LMM Auger electron energy is ~423 eV (EAuger = EL2 – EM4 – EM3) and the X-ray photon energy is ~457.8 eV (Ehv = EL2 – EM4).

Electron Beam Effects

When the electron beam strikes a sample surface, it produces a plethora of different interactions. Elastic scattering occurs when a high energy electron (1 to 30 keV) strikes a sample atom and recoils with essentially all of its energy. (The RBS kinematic factor equation applies to this situation and indicates an energy loss of 1 eV for a 25 keV electrons striking a surface iron atom and scattering back at 180 degrees.) The electron beam loses energy as it passes through material, thereby broadening the energy distribution of backscattered electrons. Inelastic scattering occurs by several mechanisms as the primary electron gives up larger amounts of its energy.

  • Plasmon excitation, occurs with high probablility as the free electron gas between ionic cores absorbs energy. Typical plasmon excitations involve transfer of around 15 eV to the solid.
  • Conduction band excitation ejects loosely bound conduction electrons as secondary electrons. The majority leave with 0 to 50 eV kinetic energies.
  • Bremsstrahlung (from the German for “braking radiation”) occurs when a primary electron undergoes deceleration in the Coulombic field of an atom. The bremsstralung consists of X-ray photons with energies spread between zero and the primary beam energy.
  • Excitation of lattice oscillations (phonons) transfers a substantial portion of beam energy to the sample as heat.
  • Inner shell ionization leaves the atom in an a highly energetic state while absorbing a large amount of primary electron energy. Decay of this excited state produces characteristic Auger electrons and X-rays.
Auger Analytical Volumes

Electron beams disperse into small volumes, typically about one cubic micron (1e-12 cc). X-rays are emitted from most of this volume. Auger signals arise from much smaller volumes, down to about 3e-19 cc.

The X-ray analytical volume increases with electron beam energy and decreases for materials with higher atomic numbers. The Auger analytical volume depends on the beam diameter and on the escape depth of the Auger electrons. The mean free paths of electrons depend on their energies and on the sample material. The minimum mean free path (~0.5 nm) occurs at about 80 eV. Under practical analytical conditions the mean free path increases to as much as ~25 nm.

Auger Electron Spectroscopy

Auger electron spectroscopy (AES) identifies elemental compositions of surfaces by measuring the energies of Auger electrons. An Auger spectrum plots a function of electron signal intensity versus electron energy. The Auger energies fall between secondary electron energies on the low end and backscattered electron energies on the high end. Those backscattered electrons that recoil with 100 % of their primary energy form the elastic peak.

The terms secondary and backscattered are sometimes defined in the operational terminology of scanning electron microscopy (SEM). The true secondary electrons have energy less than ~50 eV. They can be detected with the SEM secondary electron detector biased at +50 to +200 V. All electrons with too much energy to be trapped in the secondary electron detector fall in the backscattered category.

The Auger electrons start with narrow energy distributions, but they soon lose energy as they pass through materials. Auger electrons fail to emerge with their characteristic energies if they start from deeper than about 1 to 5 nm into the surface. Thus, Auger analysis is surface specific. Auger electrons that escape from deeper in the sample contribute loss tails to the spectrum background. The secondary and backscattered electrons have broad energy distributions that tail into the Auger region. The sum of these interfering signals is much greater than the Auger signals themselves. Auger display algorithms use differentiation to enhance the signal relative to the interferences.

Uses of Auger

Auger electron spectroscopy provides compositional information for many types of surfaces, thin films, and interfaces. Typical samples include both raw semiconductors materials and finished electronic devices. Many of these devices consist of thin layers. For example, Auger can distinguish between Si, SiO2, SiO, and Si3N4 in a 10 nm layer on a silicon wafer.

Auger analytical volumes down to about 3e-19 cc are possible. It is common to analyze individual small features within finished or partly finished electronic devices. Many other analyses rely on this microanalytical capability for characterizing heterogeneous materials. For example, Auger analyses of failed materials are common. The fractured surfaces of a broken piece of steel might be examined for the presence of unusual elements such as lead at metal grain boundaries. In contrast to Auger, less finely focused microanalytical techniques provide only average concentrations from larger analytical volumes.

Limitations of Auger

Although widely useful, Auger does have limitations. It cannot detect hydrogen or helium. It does not provide for nondestructive depth profiles. It requires that samples be small and compatible with high vacuum. Nonconducting samples sometimes charge under electron beam bombardment and simply canít be analyzed. Elemental quantitation by Auger depends on instrumental, chemical, and sample related factors.

Auger Electron Energies

Qualitative analysis by Auger electron spectroscopy depends on identification of the elements responsible for the various peaks in the spectrum. The Auger electron energies are widely tabulated for all elements in the periodic table. The figure shows the most useful Auger peaks in the KLL, LMM, and MNN parts of the spectrum as well as higher transitions for elements above cesium. The red dots indicate the strongest and most characteristic peaks and the green bands indicate the rough structure of less intense peaks.

Elemental Quantitation

Auger electron peaks are proportional to elemental concentrations. However, it is seldom possible to measure concentrations from first principles. Several instrumental factors influence Auger peak heights. These include primary beam energy, sample orientation, and the energy resolution and acceptance angle of the analyzer.

The chemical states of elements in the sample also influence the process of elemental analysis by Auger. Both peak intensity and peak shape vary, especially as a function of oxidation state. Changes in peak shape are important when the quantitation proceeds from a differential data display.

Sample heterogeneity must be considered for quantitative analysis. The sample should be homogeneous in the lateral directions relative to the primary beam diameter for measurements to be accurate. The Auger signals arise from an analytical volume that depends mainly on the diameter of the primary beam. If the beam is narrower than the scale of heterogeneity, then meaningful analyses can be made on islands within a sample. The thickness of the analytical volume is small because Auger is highly surface sensitive. Therefore, the analyzed surface may not be representative of the bulk material. For example, many metal samples acquire thin oxide coatings when exposed to air. In spite of the above considerations, quantification of elemental concentrations is possible in cases where relative sensitivity factors have been measured in the same sample matrix.

A typical Auger analysis requires quantification of major and minor elements. This concentration range is consistent with Auger analytical detection limits (1 to 0.01 %). (In contrast, SIMS usually provides trace element quantification while the major elements remain essentially constant.) Since concentrations of all elements, (including the matrix) can vary in an Auger measurement, it is necessary to express concentrations as percents (CE%) normalized relative to the sum of all others.

The next part of the procedure uses the same logic as SIMS RSFs.

Substituting the right side of the RSF equation for concentrations (CE and CX) in the top equation (and eliminating the matrix current terms from the numerator and denominator) give the following equation. This format is the most common method for elemental quantification by Auger. However, it should be noted that Auger RSFís are often reciprocals of those defined here. (They must be incorporated by division into the Auger signal rather than multiplication.)

Auger Electron Emission Probabilities

The Auger electron is the final electron in the Auger emission process. The primary excitation beam removes the first electron from a core level of an analyte atom to produce a vacancy. A second electron falls from a higher level into the vacancy with release of energy. The resulting energy is carried off with the Auger electron which is ejected from a higher energy level.

Auger Depth Profiling

To analyze samples in depth, Auger instruments incorporate ion beam sputtering to remove material from the sample surface. One cycle of a typical depth profile consists of sputtering a small increment into the sample, stopping, measuring relevant portions of the Auger spectrum, and using the equation for elemental quantification.