

ICH STABILITY REQUIREMENTS Overcoming the Challenges

Wayland Rushing, Ph.D. Director, Scientific Affairs

- "resistance or the degree of resistance to chemical change or disintegration" – dictionary.com
- "the capacity of a drug product to remain within specifications established to ensure its identity, strength, quality and purity" – FDA, 1987, 1998
- "evidence on how the quality of a drug substance or drug product varies with time under the influence of a variety of environmental factors such as temperature, humidity, and light, and to establish a re-test period for the drug substance or a shelf life for the drug product and recommended storage conditions." – ICH Q1A

© 2017 FAG Inc

Factors That Influence Stability

- DP/DS Characteristics
 - Particle Size
 - Surface Area
 - Formulation
 - Excipients
 - pH
 - Preservatives
 - Solvents
 - Polymorphs
 - Crystalline Structure

- Environmental
 - Light
 - Heat
 - Oxygen
 - Humidity
- Container/Closure System
- Packaging

Phase Phase Phase Phase IIA IIB Phase III

July 20, 2017

© 2017 EAG, Inc.

ATIONS? HOW DO YOU PREDICT EFFECTS OF POST-TRANSLA 40NAL

S? HOW DO YOU EVALUATE CONTAINER/CLOSURE STSTEMS? HOW DO WE MAKE PACKAGING SAFER? HOW DO WE SPEED UP INNOVATION? HOW DO REORM AS EXPECTED? HOW DO YOU KNOW HOW DRUG IS DISTRIBUTED IN A PATCH? HOW DO YOU MEASURE SURFACE ROUGHNESS? HOW DO YOU

© 2017 EAG, Inc.

ATIONS? HOW DO YOU PREDICT EFFECTS OF POST-TRANSLA5 ONAL F PACKAGING SAFER? HOW DO WE SPEED UP INNOVATION? HOW DO

© 2017 EAG, Inc.

ATIONS? HOW DO YOU PREDICT EFFECTS OF POST-TRANSLA®ONAL AKE PACKAGING SAFER? HOW DO WE SPEED UP INNOVATION? HOW DO

© 2017 EAG, Inc.

G, Inc. ATIONS? HOW DO YOU PREDICT EFFECTS OF POST-TRANSLA7 ONAL E MAKE PACKAGING SAFER? HOW DO WE SPEED UP INNOVATION? HOW DO

International Conference of Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH)

- Japan: Ministry of Health, Labour and Welfare, and Japan Pharmaceutical Manufacturers Association
- **Europe:** European Union and European Federation of Pharmaceutical Industries and Associations
- USA: Food and Drug Administration and Pharmaceutical Research and Manufacturers of America
- Observers: World Health Organization, European Free Trade Association, and Health Canada

2017 EAG, In

To increase international harmonization of technical requirements

- Reduce unnecessary duplication
- Reduce animal testing
- Reduce development costs

ICH issues *Guidance—NOT* REGULATIONS

- Q1A (R2) Stability testing of New Drug Substances and Products
- Q1B Stability Testing: Photostability Testing of New Drug Substances and Products
- Q1C Stability Testing for New Dosage Forms
- Q1D Bracketing and Matrixing Designs for Stability Testing of New Drug Substances and Products
- **Q1E** Evaluation of Stability Data
- Q1F Stability Data package for Registration Applications in Climatic Zones III and IV - Withdrawn
- Q5C Stability Testing of Biotechnological/Biological Products

- Provide evidence on how quality varies with
 - Time
 - Heat
 - Light
 - Humidity
- Establish re-test period for DS
- Establish Shelf Life

	Zone 1	Zone II	Zone III	Zone IV
Description:	Moderate	Mediterranea n	Hot/Dry	Very Hot/Moist
Average Temp:	21 °C	25 °C	30 °C	30 °C
Average %RH:	45% RH	60% RH	35% RH	70% RH

© 2017 EAG, Inc.

HOW DO YOU PREDICT EFFECTS OF POST-TRANSL/12 ON/

- Guideline applies to zones I and II
 - EU, Japan and US
 - Data generated in any region is applicable to other two regions
 - Does not apply to ROW
 - ✓ WHO guidelines
- Defines recommended stability data for registration

Stability Study Types

- Long term
 - "normal" target storage conditions
- Intermediate
 - Stability condition which is designed to moderately increase the rate of degradation
- Accelerated
 - Stability condition which can be used as a potential worst case predictive condition for the long term conditions
- Stress testing
 - Intentional degradation by various chemical and non-physical stressing conditions
- Photostability
 - Determination of impact of light on the stability of the product

Stability Conditions

	Long Term	Intermediate	Accelerated	
General Storage	25 °C/60% RH (12 months)	30 °C/65% RH (6 months)	40 °C/75% RH (6 months)	
Refrigerated Storage	5 ºC (12 months)	NA	25 °C/60% RH (6 months)	
Frozen Storage	- 20 °C	NA	NA	
Below -20 °C	Case-by-case			
Semi-Permeable	25 °C/40% RH Or 30 °C/35% RH (12 months)	30 °C/65% RH (6 months)	40 °C/ NMT 25% RH (6 months)	

July 20, 2017

© 2017 EAG, Inc.

IONS? HOW DO YOU PREDICT EFFECTS OF POST-TRANSL 15 ONA

- 3 Primary Batches
 - Same process and synthetic route as final procedure
 - Quality should be same as production scale
 - container/closure should be the same or representative of proposed storage

- 3 primary batches
 - On each DP configuration
 - Unless bracketing/matrixing
 - Batches made by same process as filed
 - Each batch recommended to be made with different DS batches
 - Container/Closure should be same as proposed marketing packaging
 - Include secondary if needed

- Long Term
 - 1st year: every 3 months
 - 2nd year: every 6 months
 - Yearly after
- Accelerated
 - Three time points
 - 0, 3, and 6 months
- Intermediate
 - Every three months for 1 year
 - If needed as a result of Significant Change

- Drug Substance
 - Failure of specification
- Drug Product
 - 5% change in assay from initial value
 - Degradation specification failure
 - Failure for appearance, functional or physical attributes

- Attributes which are susceptible and may "influence quality, safety, and/or efficacy"
- Critical Quality Attributes
- Physical, Microbial, Chemical

Typical Quality Attributes

- Chemical
 - Loss of Efficacy
 - Assay/Potency
 - Increase in toxicity
 - Impurities
- Microbial impact
 - Sterility
- Change in Elegance
 - Taste
 - Smell
 - Color

- Physical
 - Dissolution
 - Hardness
 - Precipitation
 - Reconstitution
- Packaging Failures
- Loss of functionality
- Semi-Permeable
 - Water Loss

- Degradation Pathway determination
 - Acid, Base, Oxidation, Heat, Humidity, Light Stress
 - Determination of potential impurities
 - Determination of potential susceptibilities
- Analytical Methods
 - Help to direct method development/validation
 - Mass Balance
 - Stability Indicating Determination

- Perform GAP analysis on early phase methods
 - Ensure proper development for phase III expectations
- Employ stability indicating method(s)
- Methods should be validated
 - ICH Q2
 - FDA guidance (Feb 2014): Analytical Procedures and Methods Validation for Drugs and Biologics

- 1.2 million lux overall exposure
- Integrated UV of NLT 200 watt hours/m²

Option I

- "Sun" lamp: D65 (ISO 10977)
- Temperature exposure a concern

Option II

- Cool white fluorescent and near UV fluorescent lamps
- Longer stressing times

- Forced Degradation
 - Determination of photodegradation pathways
 - Analytical method support
- Confirmatory
 - Handling, packaging and labeling
- Presentation
 - Minimize physical changes
 - \checkmark Evaporation, sublimation, etc.
 - Transparent container, i.e. Quartz
 - Solid, NMT 3mm thick

- Stepwise Procedure
 - Direct Exposure
 - ✓ If applicable
 - ✓ If acceptable change may stop
 - Immediate Pack
 - ✓ Primary container/closure
 - ✓ Orient to get uniform exposure
 - ✓ If acceptable change may stop
 - Marketing Pack
 - ✓ Secondary packaging/marketing packaging
 - ✓ If unacceptable change, reformulation/repackage

- Same API as existing product but in a different form
 - Different route of administration
 - \checkmark Oral to parenteral
 - New Functionality
 - ✓ Immediate release to Sustained release
 - Different dosage form
 - \checkmark Tablets to capsules
- Follow ICH Q1A and Q1B
 - Reduced testing may be justified

- Bracketing
 - Only extremes of ranges are tested
 - ✓ 1, 3, 5, 7 mg tablets
 - \checkmark Only test 1 and 7 mg tested at all time points
 - ✓ Intermediate levels represented by extremes
- Matrixing
 - Subsets of samples are tested at time points
 - ✓ Assumes each subset is representative of all subsets

- Main Topics
 - How to analyze the data generated by ICH Q1A
 - When to use extrapolation
 - How to set retest/shelf life

- Accelerated Condition: No significant change
- Long Term Condition: No significant change
- Room Temperature
 - Statistical Evaluation may not be needed
 - Extrapolation of shelf life can be double but no more than 12 months beyond long term data
- Refrigerated
 - Extrapolation of shelf life can be 1.5 times but no more than 6 months beyond long term data

- Accelerated Condition and/or Long Term Condition show change/variability
 - Data not amendable to interpretation
 - \checkmark Supporting data may be used
 - ✓ Developmental batches
 - Extrapolation of shelf life can be 1.5 times but no more than 6 months beyond long term data
 - Refrigerated: shelf life can no more than 3 months beyond long term data
 - Data amenable to interpretation
 - Extrapolation of shelf life can be double but no more than 12 months beyond long term data
 - Refrigerated: shelf life can be 1.5 times but no more than 6 months beyond long term data

- Accelerated Condition: Significant change
- Intermediate Condition: No significant change
- Room Temperature
 - Long term data not amenable
 - Extrapolation of shelf life no more than 3 months beyond long term data
 - ✓ If backed up by supporting data
 - Long term data amenable
 - Extrapolation of shelf life can be 1.5 times but no more than 6 months beyond long term data
- Refrigerated
 - Extrapolation is not appropriate
 - Retest/Shelf life based on long term data

© 2017 EAG, Inc.

W DO YOU PREDICT EFFECTS OF POST-TRANSL/33 O

DNS? HOW DO YOU EVALUATE CONTAINER/CLOSURE SYSTEMS? HOW DO WE MAKE PACKAGING SAFER? HOW DO WE SPEED UP INNOVATION? HOW DO PERFORM AS EXPECTED? HOW DO YOU KNOW HOW DRUG IS DISTRIBUTED IN A PATCH? HOW DO YOU MEASURE SURFACE ROUGHNESS? HOW DO YOU

© 2017 EAG, Inc.

CT EFFECTS OF POST-TRANSL/34 ON.

- Accelerated Condition: Significant change
- Intermediate Condition: Significant change
- Evaluation
 - Retest/Shelf life cannot exceed long term data

- Retest/Shelf life based on long term data
- Testing on single batch at 5 °C or 25 °C recommended for excursions
- For storage below -20 °C
 - Addressed on case-by-case basis
 - Retest/Shelf-life based on long term data

- Regression Analysis
 - May be linear or non-linear
 - Plot intersection of 95% confidence interval with proposed specification
 - ✓ One-sided or two-sided confidence intervals
 - SAS, Slimstat, JMP, etc
 - Analysis should take into account study design to ensure statistical significance

© 2017 EAG, Inc.

C. ATIONS? HOW DO YOU PREDICT EFFECTS OF POST-TRANSL438 ON/ AKE PACKAGING SAFER? HOW DO WE SPEED UP INNOVATION? HOW

- In general ICH Q1A can be applied
 - Special Considerations should be made
 - ✓ Complexity of stability indicating methods
 - ✓ Availability of lots
 - ✓ Retest/Expiry based on long-term, real-time data

- Accelerated/Long Term stability both demonstrated a loss of mass balance (HPLC method)
 - Scenario 1: Impurities with different spectral properties
 - Scenario 2: Inappropriate methods
- Both Scenario 1 and 2
 - Stress studies inadequate
 - Degradation Pathway not understood
 - Method development didn't use appropriately stressed samples
 - New methods developed using alternate detection techniques

- Impurity peak grew over 6 months then decreased
 - Trending at 6 months would have had expiry at 12 months
 - Impurity decreased at 9 and 12 month time points
- Isolation and ID performed
 - Impurity was an intermediate
 - $\checkmark \quad \mathsf{A} + \mathsf{B} \to \mathsf{C}$
 - $\checkmark \quad \mathsf{C} \to \mathsf{D}$
 - Reaction product (D) found in the solvent front
 - ✓ New method developed

Download this presentation www.eag.com/stability

July 20, 2017

© 2017 EAG, Inc.

V DO YOU PREDICT EFFECTS OF POST-TRANSL **42** ONAL G SAFER? HOW DO WE SPEED UP INNOVATION? HOW D