Industries
Services

Pharmaceutical & Biopharmaceutical Development Services

EAG brings unparalleled expertise to the development and commercialization of small molecule drugs, biopharmaceuticals, antibody-drug conjugates (ADCs), drug-device combination…

EAG brings unparalleled expertise to the development and commercialization of small molecule drugs, biopharmaceuticals, antibody-drug conjugates (ADCs), drug-device combination products and other therapies. From designing IND-enabling studies to delivering full CMC analytical and QC support, we join your R&D team as a true partner. EAG scientists take time to understand both your commercial goals and the unique characteristics of your compound. We provide expert guidance to balance regulatory expectations with expediency and cost, and approach technical challenges with flexibility and resolve.

Materials Testing & Analysis

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity…

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity of analytical techniques of technical ingenuity of EAG. From polymers to composites, thin films to superalloys—we know how to leverage materials sciences to gain a competitive edge. At EAG, we don’t just perform testing, we drive commercial success—through thoughtfully designed investigations, technically superior analyses and expert interpretation of data.

Environmental Testing & Regulatory Compliance

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of…

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of active ingredients and formulations—from pesticides and pharmaceuticals to industrial chemicals and consumer products. Whether you are exploring “what if” scenarios, registering a new active ingredient or formulation, responding to a data call-in or seeking to understand the latest guidance, turn to EAG for technical excellence, sound advice, GLP-compliant study execution and expert interpretation.

Microelectronics Test & Engineering

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human…

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human life. In the world of technology, innovation and continuous improvement are imperatives—and being able to quickly and reliably test, debug, diagnose failures and take corrective action can make the difference between a doomed product launch and building a successful global brand. EAG offers you the world’s largest and most diverse collection of specialized analytical instrumentation, capacity to perform a variety of microelectronic tests in parallel, and the multi-disciplinary expertise required to draw true insight from data.

Custom Synthesis & Radiolabeling

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical…

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical and related industries than we do. From 14C and 3H radiolabeled clinical trial materials synthesized under cGMP, to stable-labeled active ingredients for metabolism and environmental fate/effects testing, turn to EAG. We have extensive experience with multi-step and other complex synthesis projects, and our comprehensive, in-house analytical services ensure quick turnaround of purity and structural confirmation.

Crop Biotechnology & Development

EAG combines biotechnology and protein characterization expertise with more than 50 years' experience analyzing chemical compounds in plant and environmental matrices to address…

EAG combines biotechnology and protein characterization expertise with more than 50 years’ experience analyzing chemical compounds in plant and environmental matrices to address the growing needs of the biotechnology crop industry. We offer a wide range of techniques required to fully characterize the event insertion and expressed proteins, as well as the various studies required to confirm the food, feed and environmental safety of products that represent the trait. From early-stage protein confirmation to GLP-compliant EDSP and allergenicity testing, we help you make faster, more informed development decisions and comply with evolving global regulations of genetically engineered crops.

Litigation Support & Expert Testimony

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes,…

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes, turn to EAG. We’ve provided technical consulting, analysis and expert testimony for hundreds of cases involving the aerospace, transportation, medical device, electronics, industrial and consumer product industries. Our team of experts understands the legal process and your need for responsiveness, effective communication, scientifically defensible opinion and confidentiality. From professional consulting to data review to trial preparation and expert witness testimony, ask EAG.

Techniques

Chromatography

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer…

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer look at the purity of your pharmaceutical or need to better understand an agrochemical’s components, EAG has the expertise to separate and evaluate any compound.

Mass Spectrometry

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and…

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and molecules in almost any pure or complex material to detect and obtain mass spectra of the components. We rely on decades of experience in mass spectrometry to provide our clients with precise analyses and the best detection limits.

Imaging

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images…

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images for various industries, from consumer electronics to nanotechnology. Using state-of-the-art equipment and innovative techniques, we conduct expert imaging to aid in failure analysis, dimensional analysis, process characterization, particle identification and more. If you want to investigate a material with angstrom scale resolution, you can count on EAG to get the job done quickly and precisely.

Spectroscopy

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and…

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and methodology with cutting-edge technology to analyze your organic, inorganic, metallic and composite materials for identification, compositional, structural and contaminant information. Whether you need expert spectroscopic analysis to improve your production process or to surmount a technical challenge, EAG is up to the task.

Physical/Chemical Characterization

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be…

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be done right, you can count on EAG. We offer a range of adaptable techniques and innovative methods to evaluate the physical and chemical characteristics of any compound. Our highly precise testing and analytical services will improve your production process, expedite R&D and help you conquer any technical challenge.

About

A Global Scientific Services Company

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and…

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and business. The scientists and engineers of EAG apply multi-disciplinary expertise, advanced analytical techniques and “we know how” resolve to answer complex questions that drive commerce around the world.

Our Customers

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and…

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and highly regulated industries. We help our customers innovate new and improved products, investigate manufacturing problems, perform advanced analyses to determine safety, efficacy and regulatory compliance, and protect their brands.

Our Company Culture

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win…

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win together.” Across all of our 20+ locations, you will find a true passion for science and the power of science to improve the world we live in. Hear what some of our ~1200 scientists, engineers and support personnel say about what it means to be part of EAG Laboratories.

Careers

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you.…

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you. Browse current openings now, and re-visit our careers page often.

How do you constantly innovate while driving down costs?

Advanced Materials and Processes Pose Tough Challenges for Electronic Systems Failure Analysis

WHITE PAPER

As today’s electronics systems continue to shrink in size and become more complex and pervasive, failures can cause costly downtime, product delays and recalls, and debilitating reputational damage. It is important to find and fix failures before they can do damage, but this becomes increasingly challenging when devices are built using advanced materials and processes. The solution is to employ a comprehensive, multi-disciplinary approach to electronic systems failure analysis. Additionally, many failures can be avoided, altogether, by thorough testing, coupled with the use of the latest focused ion beam (FIB) circuit edit techniques to quickly and inexpensively debug and validate design fixes or explore design optimization opportunities in ICs without having to commit to costly and time-consuming full mask spins.

SYSTEM COMPLEXITY CONTINUES TO GROW AND EVOLVE

Systems are becoming more complex at all levels — board, die, IC and package. Today’s devices can contain billions of transistors, and integrate a wide variety of previously discrete components and independent systems. With the arrival of FinFET, metal gate, low-k dialetric and other advanced process nodes, devices are getting ever smaller. Packaging complexity is also growing, with options including SIP, MCM, SiSub, stacked die, TSV and Cu wire. Additionally, today’s devices increasingly feature multi-layer metal stacks and are produced in flip chip and other advanced chip scale form factors. Meanwhile, the materials, coatings and molding compounds associated with advanced packages and boards are also growing more complex. In the power arena, many devices are moving to silicon carbide (SiC), gallium nitride (GaN) and other wide bandgap materials that create additional challenges related to design and characterization, process monitoring and reliability.

To make the failure analysis problem even more difficult, many failures occur only intermittently. System challenges vary widely by industry and application, with each functional element in a design often requiring specialized domain knowledge in order to understand a failure’s root causes and mechanisms. Networking and automotive systems offer good examples of the breadth and depth of today’s failure analysis challenges. A networking system can span multiple boards containing thousands of components, including complex ICs and SoCs that each might also contain many types of RF, power supply, high-speed digital and storage media. Today’s automobiles are similarly complex, containing as many as 100 electronic control units (ECUs), or more, for systems ranging from backup cameras to lane-changing warning systems, and tomorrow’s assisted-driving and sensor-guided autopilot systems are expected to include a dozen ultrasonic detectors and multiple cameras and radar sensors. Failures can occur anywhere in a complex chain of stand-alone and multiple interrelated systems. Meanwhile, counterfeit components may also have entered the automotive supply chain, introducing additional risks and accentuating the need for screening and analysis plus various types of verification and authentication tests against reliability specifications.

FAILURE ANALYSIS: THE FIRST LINE OF DEFENSE

The ideal failure analysis approach must span both electrical and physical analysis to optimize root cause identification and determine the associated failure mechanism and how to prevent future failures. The focus must be on the entire system, including the electronics, materials, and failure mechanisms occurring at the IC transistor level (see Fig. 1).

Electronic systems failure analysis from EAG Laboratories, flow chart shows possible root causes and failure mechanisms
Figure 1 Multi-level failure analysis should extend across the full continuum of possible root causes and failure mechanisms.

Effective failure analysis also requires highly experienced and well-trained engineers and technicians with expertise that extends from the component to the system level, and they must have at their disposal a comprehensive set of lab equipment. Failure analysis service providers also must be able to perform parallel processing of large projects, and they should have the capability to scale their services as client needs dictate. Other key ingredients include system redundancy and such specialized equipment as advanced high-resolution microscopy imaging systems that enable component-level analysis. To handle failure characterization, labs also must have such fundamental capabilities as x-ray, thermal mapping, curve trace, time domain reflectometry, and functional test equipment, as well as more advanced tools such as laser timing probe for real-time, no-loading, non-contact signal waveform acquisition. At advanced nodes below 28nm, nano-probing and more sophisticated equipment may also be necessary, so that failures can be localized down to a single transistor, if necessary.

Sometimes, materials analysis using various spectroscopy techniques (EDS, Raman) or X-ray (diffraction, reflectivity, or flouorescence) can also be useful to characterize materials issues.

Also critical is a comprehensive methodology and work flow (see Fig. 2), beginning with a definition of the electrical failure signature, and continuing through failure mechanism identification and problem resolution. In order to address multiple complex and interdependent components and features, the process must also include disciplined and periodic refining of the analysis approach based on data and incremental findings. This approach typically involves developing hypotheses and then working to validate or reject them. Various experiments may also be necessary, in order to duplicate and/or model a given failure.

Electronic systems failure analysis methodology work flow from EAG Laboratories
Figure 2 System-level failure analysis methodology and work flow

It is often critical to customization the failure analysis approach, as well. Each situation has its own specific characteristics and issues to address, eliminating the possibility of a “one size fits all” approach. Each situation requires a methodical approach that begins the right questions so that a customized workflow can be developed.

PREVENTING IC FAILURES BEFORE THEY OCCUR, WITH THOROUGH TESTING AND USE OF FIB CIRCUIT EDIT

Another strategy for decreasing failures is to employ thorough testing of ICs and follow-up use of FIB circuit edit during the development process, especially at advanced process nodes where it would be difficult, if not impossible, to anticipate future problems based on previous design work. Electrical characterization, functional testing, and reliability qualification can help uncover many issues before products are released to production. Once issues are identified, FIB circuit edit can be used during the process of debugging and validating fixes to in-progress designs, or exploring design optimization changes before committing to the high cost and lengthy timetables of a full mask spin.

Barriers to success can be even higher at advanced process nodes because of high mask costs and greater difficulty associated with finding and fixing bugs. It can be extremely difficult to anticipate problems at these nodes based on experience gained during earlier design work. Devices manufactured at today’s 20-nm process nodes have 10 times smaller feature sizes than the laser light wavelength that is generally used in lithography. At these advanced nodes, pre-silicon testing is more difficult, simulations take much longer, and it is impossible to fully verify many designs. Even more problematic are extremely complex designs that may have flawed simulation models, and which can easily be stressed by their packaging.

With each new technology node, design and integration complexity grows. Challenges range from multiple patterning and layout-dependent effects (LDE) to the use of local interconnect layers. Server signals and power electro-migration can also create difficulties. The smaller the metal pitch becomes, the more chance of coupling effects and signal integrity issues. Higher wire and via resistance also requires more advanced and variable wire sizing and tapering techniques. There are also challenges related to extraction, timing, signal integrity analysis, and modeling, and each must account for many variation issues in order to ensure accuracy without jeopardizing performance. Plus, lithography limitations at 20 nm often create the need for significant fixing in order to achieve signoff. Finally, there are many different chip and intellectual property (IP) integration challenges, packaging issues, and additional complexity as all of these issues interact with one another.

To address some of these issues, EDA tool providers are already offering advice related to design flow and other solutions to difficult technical challenges. Beyond these design flow modifications, however, developers can also apply FIB circuit edit at the prototype stage during debug. The same techniques can also be employed to explore design optimization opportunities, enabling developers to quickly and inexpensively create, test and validate physical prototypes before committing to the high cost or lengthy timetables of a full mask spin. FIB-edited device prototypes can then be used on a one-time basis to guide mask modifications, as an alternative to successive trial-and-error mask versions.

With today’s solutions, it is possible to edit circuits fabricated with 28 nm and smaller technology nodes that feature multiple-layer metal stacks and occupy flip chip and other advanced chip scale form factors. To perform the edits, a nanoscale-resolution, gallium (Ga+) ion beam is used in the process of imaging, etching and depositing materials on the IC. This is done with an extremely high level of precision. To cut and connect circuitry within the live device, material is removed and deposited, and the same process can also be employed to create probe points that are used for electrical test (see Fig 3). Advances in tools, methodologies and techniques have improved beam guidance, enabling operators to perform more intricate operations, in smaller areas, on both the back and front sides of the device, and to handle copper layers.

Electronic systems failure analysis image of FIB circuit edit connections and cuts from EAG Laboratories
Figure 3 Multiple front-side FIB circuit edit connections and cuts.

To locate areas of interest, the FIB tool is coupled to a CAD navigation system and the designer’s GDS files are typically used to navigate to the precise area. This provides a very precise method for finding subsurface features and ensuring that the right edits are made (see Fig. 4). One of the most important requirements for successful FIB circuit edit is the ability to accurately position the beam.

Electronic systems failure analysis image of CAD layouts for FIB circuit edits from EAG Laboratories
Figure 4 CAD layouts enable operators to perform FIB circuit edits.

There are a variety of valuable applications for FIB circuit edit at every commercial available node, including verifying design change on the tester and validating that change at the system board level. The process can be implemented both at the simulation stage and later during de-bug to optimize success rates during the IC design process (see Fig. 3). Typical applications include debugging and optimizing devices in production, exploring and validating design changes, and prototyping new devices without costly and time-consuming mask set fabrication. FIB circuit edit also can be used to scale fixes to a handful or tens of devices to provide samples to internal test, validation and qualification teams and even customers. Finally, FIB circuit edit can be used to accelerate time-to-market, speeding up the entire cycle for getting customers into production and avoiding loss of reputation or late penalties, or keeping potential competitors from getting their foot in the door.

Process flow for FIB circuit edit for electronic systems failure analysis from EAG Laboratories
Figure 5 Process flow for FIB circuit edit.

Electronic system failures are becoming increasingly difficult and expensive to identify, diagnose and resolve. The stakes have never been higher to quickly find and fix them before they create problems. This requires a comprehensive, multidisciplinary electronic system failure analysis methodology and workflow that extends from the component to system level and is backed by specialized expertise and equipment. Meanwhile, the challenges associated with IC design verification and validation continue to intensify as nanoscale geometries move downward. Adding FIB circuit edit to an overall failure analysis and resolution arsenal can significantly increase design success rates and preempt failures before they happen, by improving debug and validation, and making it easier to explore design optimization opportunities without committing to a full mask spin.