Industries
Services

Pharmaceutical & Biopharmaceutical Development Services

EAG brings unparalleled expertise to the development and commercialization of small molecule drugs, biopharmaceuticals, antibody-drug conjugates (ADCs), drug-device combination…

EAG brings unparalleled expertise to the development and commercialization of small molecule drugs, biopharmaceuticals, antibody-drug conjugates (ADCs), drug-device combination products and other therapies. From designing IND-enabling studies to delivering full CMC analytical and QC support, we join your R&D team as a true partner. EAG scientists take time to understand both your commercial goals and the unique characteristics of your compound. We provide expert guidance to balance regulatory expectations with expediency and cost, and approach technical challenges with flexibility and resolve.

Materials Testing & Analysis

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity…

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity of analytical techniques of technical ingenuity of EAG. From polymers to composites, thin films to superalloys—we know how to leverage materials sciences to gain a competitive edge. At EAG, we don’t just perform testing, we drive commercial success—through thoughtfully designed investigations, technically superior analyses and expert interpretation of data.

Environmental Testing & Regulatory Compliance

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of…

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of active ingredients and formulations—from pesticides and pharmaceuticals to industrial chemicals and consumer products. Whether you are exploring “what if” scenarios, registering a new active ingredient or formulation, responding to a data call-in or seeking to understand the latest guidance, turn to EAG for technical excellence, sound advice, GLP-compliant study execution and expert interpretation.

Microelectronics Test & Engineering

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human…

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human life. In the world of technology, innovation and continuous improvement are imperatives—and being able to quickly and reliably test, debug, diagnose failures and take corrective action can make the difference between a doomed product launch and building a successful global brand. EAG offers you the world’s largest and most diverse collection of specialized analytical instrumentation, capacity to perform a variety of microelectronic tests in parallel, and the multi-disciplinary expertise required to draw true insight from data.

Custom Synthesis & Radiolabeling

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical…

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical and related industries than we do. From 14C and 3H radiolabeled clinical trial materials synthesized under cGMP, to stable-labeled active ingredients for metabolism and environmental fate/effects testing, turn to EAG. We have extensive experience with multi-step and other complex synthesis projects, and our comprehensive, in-house analytical services ensure quick turnaround of purity and structural confirmation.

Crop Biotechnology & Development

EAG combines biotechnology and protein characterization expertise with more than 50 years' experience analyzing chemical compounds in plant and environmental matrices to address…

EAG combines biotechnology and protein characterization expertise with more than 50 years’ experience analyzing chemical compounds in plant and environmental matrices to address the growing needs of the biotechnology crop industry. We offer a wide range of techniques required to fully characterize the event insertion and expressed proteins, as well as the various studies required to confirm the food, feed and environmental safety of products that represent the trait. From early-stage protein confirmation to GLP-compliant EDSP and allergenicity testing, we help you make faster, more informed development decisions and comply with evolving global regulations of genetically engineered crops.

Litigation Support & Expert Testimony

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes,…

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes, turn to EAG. We’ve provided technical consulting, analysis and expert testimony for hundreds of cases involving the aerospace, transportation, medical device, electronics, industrial and consumer product industries. Our team of experts understands the legal process and your need for responsiveness, effective communication, scientifically defensible opinion and confidentiality. From professional consulting to data review to trial preparation and expert witness testimony, ask EAG.

Techniques

Chromatography

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer…

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer look at the purity of your pharmaceutical or need to better understand an agrochemical’s components, EAG has the expertise to separate and evaluate any compound.

Mass Spectrometry

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and…

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and molecules in almost any pure or complex material to detect and obtain mass spectra of the components. We rely on decades of experience in mass spectrometry to provide our clients with precise analyses and the best detection limits.

Imaging

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images…

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images for various industries, from consumer electronics to nanotechnology. Using state-of-the-art equipment and innovative techniques, we conduct expert imaging to aid in failure analysis, dimensional analysis, process characterization, particle identification and more. If you want to investigate a material with angstrom scale resolution, you can count on EAG to get the job done quickly and precisely.

Spectroscopy

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and…

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and methodology with cutting-edge technology to analyze your organic, inorganic, metallic and composite materials for identification, compositional, structural and contaminant information. Whether you need expert spectroscopic analysis to improve your production process or to surmount a technical challenge, EAG is up to the task.

Physical/Chemical Characterization

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be…

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be done right, you can count on EAG. We offer a range of adaptable techniques and innovative methods to evaluate the physical and chemical characteristics of any compound. Our highly precise testing and analytical services will improve your production process, expedite R&D and help you conquer any technical challenge.

About

A Global Scientific Services Company

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and…

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and business. The scientists and engineers of EAG apply multi-disciplinary expertise, advanced analytical techniques and “we know how” resolve to answer complex questions that drive commerce around the world.

Our Customers

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and…

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and highly regulated industries. We help our customers innovate new and improved products, investigate manufacturing problems, perform advanced analyses to determine safety, efficacy and regulatory compliance, and protect their brands.

Our Company Culture

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win…

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win together.” Across all of our 20+ locations, you will find a true passion for science and the power of science to improve the world we live in. Hear what some of our ~1200 scientists, engineers and support personnel say about what it means to be part of EAG Laboratories.

Careers

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you.…

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you. Browse current openings now, and re-visit our careers page often.

How do you constantly innovate while driving down costs?

Low Parasitic HBM Testing

WHITE PAPER

The Human Body Model (HBM) Electrostatic Discharge (ESD) test is the oldest and most widely used ESD test in the electronics industry. The JEDEC HBM test isn’t static; it has been revised to keep up with the rapid changes in the semiconductor industry. The latest revision of the spec addresses failures that are caused by parasitic impedances in HBM testers. EAG has the equipment and expertise to help you solve your HBM test problems.

EVOLUTION OF THE HBM SPEC

The current ANSI/ESDA/JEDEC HBM test, JS-001-2014, evolved from the military ESD testing spec, MIL-STD-883, Method 3017.8. The first JEDEC version of the spec was published in 1995. Over the last twenty years, incremental improvements have been made to the HBM spec based on the data and analysis performed by reliability engineers from a cross-section of the IC industry. One of the main goals has been the reduction of the cost and time required for HBM testing. Other changes have addressed issues with the HBM simulator hardware. The following table summarizes the different revisions of the HBM spec:

IDEALIZED MODEL OF THE HBM TESTER

An idealized model of an HBM tester is shown in Figure 1.

Figure 1 Idealized HBM Tester

In this model, a 100pF capacitor is charged with a high voltage power supply, not shown in the diagram. The supply is removed from the circuit, and the capacitor is discharged through a 1500Ω resistor. In this case, the device under test is the simplest one possible: a piece of wire. If you measure the current through the piece of wire as a function of time, the waveform looks like the one shown in Figure 2.

Figure 2 HBM Current vs. Time, +1000V HBM

A MORE REALISTIC MODEL OF THE HBM TESTER

The waveform in Figure 2 shows some ringing, suggesting that there are parasitic impedances in the circuit. Parasitic impedances are any combination of extra unwanted passive devices (resistors, capacitors and inductors) in the signal path. For the discharge of an HBM simulator through a piece of wire, a more realistic circuit is shown in Figure 3.

Figure 3 A More Realistic HBM Tester Model

Because relays are used to connect the terminals of the device under test (DUT) to the HBM tester, parasitic inductance and resistance is added to the discharge path. In real HBM simulators, the 1500Ω resistor is distributed, with approximately 1400Ω on the Terminal A side and 100Ω on the Terminal B side. The resistance is divided in order to provide an in-spec waveform across the entire relay array.

Because most IC devices have more than two terminals, the situation is more complicated. Every pin on the device has a capacitively-coupled impedance path to the HBM simulator, whether the pin is connected or not. When one pin of a multi-pin power or ground group is stressed, the other pins in that group are floated, and they add additional capacitance, on the order of 4-8pF per pin. This extra capacitance can significantly change the shape of the waveform. In addition, the DUT board and socket also add additional resistance, inductance, and capacitance, causing additional changes to the HBM waveform. Any circuitry that is sensitive to the waveform slope or to the Terminal B resistance can be affected by parasitic impedances. It is even possible to damage non-stressed pins during HBM testing because of capacitive coupling. All of these can impact the waveform and cause false HBM failures (See Reference 6.) An even more realistic model of the HBM tester is shown in Figure 4.

Figure 4 An Even More Realistic HBM Tester Model

A REDUCED PARASITIC HBM TESTER

To address the problems that have been seen with relay-based systems, the last three versions of the ESDA/JEDEC HBM test allow the use of a low parasitic HBM tester. The interface between the tester and the DUT is a probe station; the part is electrically connected at two points only. No special fixtures or sockets are required, and there is no relay array resulting in reduced parasitic impedance. The DUT can be a packaged part or a wafer. Critical structures can be characterized earlier in the design cycle. (See Figure 5.)

Figure 5 HBM Two Point Tester and Probe Station

The low parasitic tester provides a highly accurate and nearly perfect HBM pulse. Voltage vs time and Current vs. Time can be measured while the pulse is being applied to the DUT. This allows a more thorough analysis of the DUT’s behavior during the HBM stress. (See Figure 6.)

Figure 6 Two Point HBM Tester Waveform and I-V Curve

EAG’S TWO POINT TESTER APPROACH

Because a two point tester is still too slow to do tests on large production parts, EAG has adopted a hybrid test strategy, using the available relay testers.

1. Test the DUT on a relay tester. This is allowed by the spec, and it’s the highest speed and lowest cost solution.

2. Minimize tester parasitic impedances by using the following practices:

  • When a multi-pin supply or ground plane is Terminal B (grounded terminal), tie all of the pins to ground.
  • When a multi-pin supply, ground, or non-supply group is Terminal A (zapped terminal), don’t zap all pins; zap a representative pin instead.
  • In the supply/ground to supply/ground tests, zap positive polarity only.

3. If there are no failures at ATE, the DUT has passed the test.

4. If failures are observed or if characterization data is required:

  • Do further stressing to identify and isolate the failing pin pairs.
  • If a pin pair passes on the two-point tester, the device passes.
  • If a pin pair fails, use the two-point tester to characterize the failure.

CONCLUSION

With the rapid changes in process technology, false failures due to relay tester parasitic impedances has become a more important HBM issue. EAG’s testing approach minimizes the incidence of false failures.

EAG has the capability to determine if you have a false failure using a two-point tester. This leads to fewer mask changes and faster time to market for EAG customers. You can count on EAG to provide you with the latest standards and best testing practices available in the industry.

 


REFERENCES

  1. JEDEC JESD22-A114, “Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM),” (Other revisions were A, B, C, D, E.)
  2. ANSI/ESDA/JEDEC JS-001-2014, “Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM),” (Other revisions were 2010, 2011, 2012.)
  3. E.Grund, M. Hernandez, Oryx Instruments, “Methods to Remove Anomalies from Human Body Model Pulse Generators,” EOS/ESDA Symposium 2006
  4. Evan Grund, Grund Technical Solutions LLC, “Two-Pin Human Body Model Testing,” EOS/ESDA Symposium 2009
  5. Scott Ward, Keith Burgess, Joe Schichl, Charvaka Duvvury, Peter Koeppen, Hans Kunz, Texas Instruments; Evan Grund, Grund Technical Solutions, “Overcoming the Unselected Pin Relay Capacitance HBM Tester Artifact with Two Pin HBM Testing,” EOS/ESDA Symposium 2010
  6. Yue Zu, Liang Wang, Rajkumar Sankaralingam, Scott Ward, Joe Schichl, Texas Instruments; “Threshold Voltage Shift due to Incidental Pulse on Nonstressed Pins during HBM Testing,” EOS/ESDA Symposium 2014