

WHITE PAPER

Using One Method for Screening Multiple Analytes of the Same Chemical Family: HPLC and Organic Acids

INTRODUCTION

Organic acids serve a variety of functions in food such as preservation, flavor, and nutrition. Some organic acids are naturally present in fruit and offer many health benefits. To evaluate organic acid content across fruit juices, the proper analytical tools for product investigation are necessary. Eurofins EAG Materials Science can identify and quantify the different organic acids using High Performance Liquid Chromatography (HPLC). This note demonstrates the abilities that Eurofins EAG has to quickly and accurately screen for common organic acids in fruit juices.

In this study, the objective was to screen four types of fruit juices (tomato, apple, orange, and coconut) for organic acids using high performance liquid chromatography with diode array detection (HPLC-DAD). A summary of test samples is presented in Table 1. This technique can utilize a variety of mobile phases, columns, and detectors to separate and identify specific components in simple to complex soluble sample matrices. The diode array detector is used to measure the sample's absorption of light at different wavelengths to identify a specific analyte.

Table 1: Description of fruit juice samples				
Sample ID Sample Description				
S1	S1 Tomato Juice			
S5 Apple Juice				
S6	Orange Juice			
S17	Coconut Juice			

ANALYSIS

For analysis, the samples were diluted in water and analyzed against organic acid reference standards. The standards include oxalic acid, tartaric acid, malic acid, citric acid, succinic acid, and ascorbic acid. A summary of potential therapeutic applications from these selected organic acids are presented in Table 2.

Using One Method for Screening Multiple Analytes of the Same Chemical Family: HPLC and Organic Acids

Table 2: Description of screened organic acid and respective fruits and health problems/benefits						
Organic Acid	Fruits Rich in Specified Acid	Health Problems/ Benefits				
Oxalic Acid ¹	Apricot Figs Kiwi Plum	Reduces mineral absorption, can contribute to kidney stones				
Tartaric Acid ²	Grapes Apricots Banana Avocado	Antioxidant and anti- inflammatory, aids in digestion				
Malic Acid ³	Apple Watermelon Banana Blackberry	Treat kidney stones, prevent dry mouth, reduce ageing signs, treat acne, promote skin hydration				
Citric Acid⁴	Lemon Lime Orange Grapefruit	Antioxidant, prevent kidney stones, clear skin				
Succinic Acid⁵	Broccoli Rhubarb Beets Asparagus	Reduces arthritis and joint pain, symptoms related to menopause, reduces fatigue				
Ascorbic Acid ⁶	Cantaloupe Citrus fruits Kiwi Berries	Protection against immune system deficiencies, cardiovascular disease, prenatal health problems, eye disease, skin wrinkling				

A summary of the organic acids screen is presented in Table 3 below. The data suggests the juices contain varying levels of oxalic acid, tartaric acid, malic acid, citric acid, succinic acid, and ascorbic acid. Citric acid and ascorbic acid are one of the most common organic acids in fruits and were quantitated.

Table 5: Detection of organic actus in truit juice samples							
Fruit Juice S	Fruit Juice Samples: X = Present, ND = Not Detected						
Organia	S1	S 5	S6	S17			
Acid	Tomato	Apple	Orange	Coconut			
	Juice	Juice	Juice	Juice			
Oxalic Acid	Х	Х	Х	Х			
Tartaric Acid	ND	Х	ND	ND			
Malic Acid	ND	Х	Х	Х			
Citric Acid	Х	Х	Х	Х			
Succinic Acid	Х	ND	ND	ND			
Ascorbic Acid	Х	Х	Х	ND			

Table 3. Detection of organic acids in fruit juice complet

Table 4 – Table 7 summarize the results of the quantitation of citric acid in tomato juice, apple juice, orange juice, and coconut juice. The quantitation was carried out using high performance liquid chromatography with diode array detection (HPLC-DAD). For quantitation, a five-point calibration curve was generated and observed to have an R2 of 0.999. The samples were fortified with a known amount of citric acid to assess accuracy and the spike recovery was observed to be 91% (tomato juice), 92% (apple juice), 99% (orange juice), and 98% (coconut juice). See Figure 1 for a representative chromatogram from the citric acid quantitation analysis of the samples.

Table 4: Quantitation of citric acid in S1, tomato juice					
Sample Descrip.	Prep. No.	Injection No.	Citric Acid Concen. (wt%) ¹	Avg. Citric Acid Concen. (wt%) ¹	% RSD²
	S1 1 Tomato Juice	1	1.56%	1.61% 2	
S1 Tomata		2	1.66%		2.6%
Juice		1	1.60%		2.0%
2	2	2	1.62%		
¹ wt % = weight percent; ² % RSD = Relative Percent Standard Deviation					

Using One Method for Screening Multiple Analytes of the Same Chemical Family: HPLC and Organic Acids

Figure 1. HPLC-DAD chromatogram of blank, mixed standard, and prepared samples

Table 5: Quantitation of citric acid in S5, apple juice						
Sample Descrip.	Prep. No.	Injection No.	Citric Acid Concen. (wt%) ¹	Avg. Citric Acid Concen. (wt%) ¹	% RSD ²	
	1	1	0.05%			
S5 ¹ Apple Juice 2	2	0.05%	0.05%	0.70/		
	1	0.05%		2.170		
	2	2	0.05%			
¹ wt % = weight percent; ² % RSD = Relative Percent Standard Deviation						

Table 6: Quantitation of citric acid in S6, orange juice						
Sample Descrip.	Prep. No.	Injection No.	Citric Acid Concen. (wt%) ¹	Avg. Citric Acid Concen. (wt%) ¹	% RSD²	
	1	1	0.82%	0.81%	1.2%	
S6 Orange — Juice	L	2	0.80%			
	2	1	0.82%			
		2	0.80%			
¹ wt % = weight percent; ² % RSD = Relative Percent Standard Deviation						

Using One Method for Screening Multiple Analytes of the Same Chemical Family: HPLC and Organic Acids

Figure 2. HPLC-DAD chromatogram of blank, ascorbic acid standard, and prepared samples

Table 7: Quantitation of citric acid in S17, coconut juice						
Sample Descrip.	Prep. No.	Injection No.	Citric Acid Concen. (wt%) ¹	Avg. Citric Acid Concen. (wt%) ¹	% RSD ²	
1	1	0.07%				
S17 Cocoput	S17	2	0.07%	0.07%	5 59/	
Juice 2	1	0.07%	0.07%	0.0%		
	2	0.07%				
¹ wt % = weight percent; ² % RSD = Relative Percent Standard Deviation						

Table 8 and Table 9 summarize the results of the quantitation of ascorbic acid in apple juice and orange juice. The quantitation was carried out using high performance liquid chromatography with diode array detection (HPLC-DAD). For quantitation, a five-point calibration curve was generated and observed to have an R2 of 0.998. Note, ascorbic acid degrades when exposed to light and warm temperatures. As a result, all preparations were performed with cold diluent and in salinized vials. The samples were fortified with a known amount of ascorbic acid to assess accuracy and the spike recovery was observed to be 117% (apple juice) and 122% (orange juice). See Figure 2 for a representative chromatogram from the ascorbic acid quantitation analysis of the samples.

Using One Method for Screening Multiple Analytes of the Same Chemical Family: HPLC and Organic Acids

Table 8: Quantitation of ascorbic acid in S5, apple juice						
Sample Descrip.	Prep. No.	Injection No.	Ascorbic Acid Concen. (wt%) ¹	Avg. Ascorbic Acid Concen. (wt%) ¹	% RSD ²	
	1	1	0.05%			
S5	T	2	0.05%	0.05%	2 70/	
Juice	2	1	0.05%	0.05%	2.1%	
	2	2	0.05%			
¹ wt % - weight percent, ² % PSD - Polative Percent Standard Deviation						

Table 9: Quantitation of ascorbic acid in S6, orange juice Avg. Citric Citric Injection % Sample Prep. Acid Acid RSD² Descrip. No. No. Concen. Concen. (wt%)1 (wt%)1 1 0.82% 1 S6 2 0.80% 0.81% 1.2% Orange 1 0.82% Juice 2 2 0.80% ¹wt % = weight percent; ²% RSD = Relative Percent Standard Deviation

SUMMARY

In summary, high performance liquid chromatography (HPLC) is a chromatographic technique that can separate different components across various samples matrices. This allows for screening for multiple specific analytes of the same chemical family, such as organic acids, in the same method. It also offers specificity, which enables distinction of one organic acid from another and means and quantifying specific organic acids in the presence of others. This approach can be useful for quality control, assessing label claims, reverse engineering studies, and comparison of different consumer products.

REFERENCES

- 1 https://www.healthline.com/nutrition/oxalate-good-or-bad#TOC_TITLE_ HDR_4;
- 2 https://food.ndtv.com/ingredient/tartaric-acid-701185;
- 3 https://health.onlineium.com/nutrition/fruits-and-vegetables-naturally-rich-in-malic-acid;
- 4 https://www.webmd.com/diet/what-is-citric-acid#1;
- 5 https://foodadditives.net/acidulents/succinic-acid/;
- 6 https://www.webmd.com/diet/features/the-benefits-of-vitamin-c#1

