Industries

Aerospace & Defense

EAG is your R&D partner, working with aerospace and defense manufacturers and suppliers to create faster, safer and more reliable aircraft and components. We use the most advanced…

EAG is your R&D partner, working with aerospace and defense manufacturers and suppliers to create faster, safer and more reliable aircraft and components. We use the most advanced analytical methodologies to answer complex engineering, materials and manufacturing problems, from evaluating the purity of new materials to confirming the characteristics of ceramic matrix composites. For research, development and production, we work alongside your technical staff to formulate and troubleshoot the next generation of aerospace and defense materials.

Chemicals & Basic Materials

For over 50 years, EAG’s scientists have applied advanced analytical techniques to solve tough problems and support R&D activities for manufacturers and users of a wide variety…

For over 50 years, EAG’s scientists have applied advanced analytical techniques to solve tough problems and support R&D activities for manufacturers and users of a wide variety of chemicals and materials. EAG offers reliable analytical results, development support for novel products, and answers to complex problems for manufacturers of chemicals used in metals, fibers, plastics, coatings, adhesives, construction materials, textiles, lubricants and more.

Consumer Products

Consumer products manufacturers and partners turn to EAG to answer R&D questions, ensure supply chain quality, respond to regulatory requirements and ensure well-supported legal…

Consumer products manufacturers and partners turn to EAG to answer R&D questions, ensure supply chain quality, respond to regulatory requirements and ensure well-supported legal arguments. EAG scientists have helped all types of consumer products companies accelerate innovation, resolve manufacturing concerns and comply with evolving regulations.

Food & Agriculture

Drive R&D productivity and keep pace with evolving environmental regulations. From agrochemical development to evaluating innovative packaging solutions, EAG scientists support…

Drive R&D productivity and keep pace with evolving environmental regulations.

From agrochemical development to evaluating innovative packaging solutions, EAG scientists support the agriculture/food s industry with scientific expertise required to enhance shelf life, ensure product safety and understand environmental impact. Whether in need of food quality investigations or help supporting regulatory filing of new chemicals, ask EAG. WE KNOW HOW.

Law

When a business’s brand and reputation is at stake, clients turn to EAG’s litigation support services for dependable scientific answers. Since 1959, our scientific expertise,…

When a business’s brand and reputation is at stake, clients turn to EAG’s litigation support services for dependable scientific answers. Since 1959, our scientific expertise, testing and testimony have supported legal strategies for intellectual property, product liability and insurance cases. Our scientists offer expertise in technology, life sciences, electronics, industrial and consumer products, having tested a broad array of materials for legal challenges. We understand the unique needs of legal projects – speed, effective communication, reliability and confidentiality.

Medical Device & Diagnostics

From initial concept and prototypes to verification/validation, submission and launch, EAG Laboratories is your partner in medical device development. From implant…

From initial concept and prototypes to verification/validation, submission and launch, EAG Laboratories is your partner in medical device development. From implant biocompatibility studies to surface chemistry for contact lenses, we have the experience and techniques to characterize, test and assure purity of medical devices and their materials, components, products and packaging. By utilizing our unique expertise in materials sciences, chemistry, electronics and regulatory support, EAG empowers device companies to create new ways to heal and improve patient quality of life.

Pharmaceuticals

Overcome R&D roadblocks with technical and regulatory know-how. For over two decades, EAG scientists have helped solve complex issues for the pharmaceutical Industry. Using…

Overcome R&D roadblocks with technical and regulatory know-how. For over two decades, EAG scientists have helped solve complex issues for the pharmaceutical Industry. Using multidisciplinary science and engineering, we help improve product development efficiency, avoid regulatory setbacks and uncover sources of problematic manufacturing issues. From GLP and cGMP studies to contaminant and packaging investigations, the scientists of EAG support every phase of the product lifecycle.

Technology

For the high-tech industry, EAG is the leader in materials characterization, surface analysis, microscopy and electronics testing. Our scientists and engineers troubleshoot and…

For the high-tech industry, EAG is the leader in materials characterization, surface analysis, microscopy and electronics testing. Our scientists and engineers troubleshoot and solve issues with consumer electronics, chip packages, printed circuit boards, displays, sensors, high-speed communications and more. We meet the demanding needs of technology innovation, enabling our clients to have confidence in their research & development, supply chains, and ultimately their manufacturing processes

Services

Pharmaceutical & Biopharmaceutical Development Services

EAG Laboratories’ pharmaceutical development services group is now part of Eurofins Biopharma Product Testing. Eurofins BioPharma Product Testing offers…

EAG Laboratories’ pharmaceutical development services group is now part of Eurofins Biopharma Product Testing.

Eurofins BioPharma Product Testing offers unprecedented, multi-location capacity and unmatched expertise through the largest harmonized network of bio/pharma product testing laboratories worldwide. From performing IND-enabling studies to full CMC analytical and QC support, we join your R&D team as a true partner, providing expert guidance to balance regulatory expectations with expediency and cost, and approach technical challenges with flexibility and resolve.

Materials Testing & Analysis

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity…

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity of analytical techniques or technical ingenuity of EAG. From polymers to composites, thin films to superalloys—we know how to leverage materials sciences to gain a competitive edge. At EAG, we don’t just perform testing, we drive commercial success—through thoughtfully designed investigations, technically superior analyses and expert interpretation of data.

Environmental Testing & Regulatory Compliance

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of…

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of active ingredients and formulations—from pesticides and pharmaceuticals to industrial chemicals and consumer products. Whether you are exploring “what if” scenarios, registering a new active ingredient or formulation, responding to a data call-in or seeking to understand the latest guidance, turn to EAG for technical excellence, sound advice, GLP-compliant study execution and expert interpretation.

Microelectronics Test & Engineering

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human…

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human life. In the world of technology, innovation and continuous improvement are imperatives—and being able to quickly and reliably test, debug, diagnose failures and take corrective action can make the difference between a doomed product launch and building a successful global brand. EAG offers you the world’s largest and most diverse collection of specialized analytical instrumentation, capacity to perform a variety of microelectronic tests in parallel, and the multi-disciplinary expertise required to draw true insight from data.

Custom Synthesis & Radiolabeling

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical…

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical and related industries than we do. From 14C and 3H radiolabeled clinical trial materials synthesized under cGMP, to stable-labeled active ingredients for metabolism and environmental fate/effects testing, turn to EAG. We have extensive experience with multi-step and other complex synthesis projects, and our comprehensive, in-house analytical services ensure quick turnaround of purity and structural confirmation.

Crop Biotechnology & Development

EAG combines biotechnology and protein characterization expertise with more than 50 years' experience analyzing chemical compounds in plant and environmental matrices to address…

EAG combines biotechnology and protein characterization expertise with more than 50 years’ experience analyzing chemical compounds in plant and environmental matrices to address the growing needs of the biotechnology crop industry. We offer a wide range of techniques required to fully characterize the event insertion and expressed proteins, as well as the various studies required to confirm the food, feed and environmental safety of products that represent the trait. From early-stage protein confirmation to GLP-compliant EDSP and allergenicity testing, we help you make faster, more informed development decisions and comply with evolving global regulations of genetically engineered crops.

Litigation Support & Expert Testimony

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes,…

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes, turn to EAG. We’ve provided technical consulting, analysis and expert testimony for hundreds of cases involving the aerospace, transportation, medical device, electronics, industrial and consumer product industries. Our team of experts understands the legal process and your need for responsiveness, effective communication, scientifically defensible opinion and confidentiality. From professional consulting to data review to trial preparation and expert witness testimony, ask EAG.

Techniques

Chromatography

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer…

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer look at the purity of your pharmaceutical or need to better understand an agrochemical’s components, EAG has the expertise to separate and evaluate any compound.

Mass Spectrometry

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and…

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and molecules in almost any pure or complex material to detect and obtain mass spectra of the components. We rely on decades of experience in mass spectrometry to provide our clients with precise analyses and the best detection limits.

Imaging

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images…

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images for various industries, from consumer electronics to nanotechnology. Using state-of-the-art equipment and innovative techniques, we conduct expert imaging to aid in failure analysis, dimensional analysis, process characterization, particle identification and more. If you want to investigate a material with angstrom scale resolution, you can count on EAG to get the job done quickly and precisely.

Spectroscopy

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and…

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and methodology with cutting-edge technology to analyze your organic, inorganic, metallic and composite materials for identification, compositional, structural and contaminant information. Whether you need expert spectroscopic analysis to improve your production process or to surmount a technical challenge, EAG is up to the task.

Physical/Chemical Characterization

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be…

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be done right, you can count on EAG. We offer a range of adaptable techniques and innovative methods to evaluate the physical and chemical characteristics of any compound. Our highly precise testing and analytical services will improve your production process, expedite R&D and help you conquer any technical challenge.

About

A Global Scientific Services Company

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and…

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and business. The scientists and engineers of EAG apply multi-disciplinary expertise, advanced analytical techniques and “we know how” resolve to answer complex questions that drive commerce around the world.

Our Customers

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and…

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and highly regulated industries. We help our customers innovate new and improved products, investigate manufacturing problems, perform advanced analyses to determine safety, efficacy and regulatory compliance, and protect their brands.

Our Company Culture

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win…

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win together.” Across all of our 20+ locations, you will find a true passion for science and the power of science to improve the world we live in. Hear what some of our ~1200 scientists, engineers and support personnel say about what it means to be part of EAG Laboratories.

Careers

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you.…

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you. Browse current openings now, and re-visit our careers page often.

How do you constantly innovate while driving down costs?

Structural and Chemical Characterization of Li-ion Batteries

APPLICATION NOTE

By Linda Romano, Ph.D., Scientific Fellow

INTRODUCTION

Lithium ion batteries have improved rapidly in the last 10 years to become the main power source in portable electronics, telecommunications, and large capacity applications such as in electric vehicles (EV). Ongoing improvements in characterization techniques must also meet industry, regulatory and consumer needs as battery manufacturers and end-users demand higher battery efficiencies, lower cost, and most importantly, safety.

DISCUSSION

At EAG Laboratories, we provide a suite of techniques suitable for both the structural and chemical characterization of Li-ion batteries. Both scanning and transmission electron microscopy (SEM and TEM) are used to provide the thickness and microstructure of the various layers in the battery. Ion milling techniques are used to preserve the integrity of the sample to assure an accurate representation of the original state of the battery materials. This is essential in order to properly understand process development or battery failures. TEM combined with X-Ray Diffraction (XRD) can also be used to analyze the phase transformations associated with the diffusion of Li-ions. Additionally, the thickness of the thin SEI layer caused by electrode-electrolyte interfacial reactions can only be visualized by TEM. Degradation mechanisms of the battery materials can be analyzed with surface analysis techniques such as X-ray photoelectron spectroscopy (XPS) to detect chemical state information and gas chromatography (GCMS) techniques to detect volatile components that can lead to swelling of the battery. These techniques along with Raman and infrared spectroscopy (FTIR), and Glow Discharge Mass Spectrometry (GDMS) can detect the organic and inorganic species present in the battery, including any impurities that may be present. Inductively coupled optical emission techniques (ICP-OES) can be used to determine the Li/metal ratio to within a 1% uncertainty, which is essential for tuning the cycling stability of Li-ion batteries.

Li Battery

Dissassmbled li-battery

Scanning Electron Microscopy with EDX

SEM EDX in a Structural and Chemical Characterization of Li-ion Batteries

Battery Cycling

Battery Cycling in a Structural and Chemical Characterization of Li-ion Batteries

TEM Chemical Mapping – Cathode

TEM Chemical Mapping in a Structural and Chemical Characterization of Li-ion Batteries

TEM of Anode

TEM of Anode in a Structural and Chemical Characterization of Li-ion Batteries

TEM Cross section of a part of the Anode structure shows the stacking of graphite platelets; SAED shows parallel orientation of the platelets.

ICP-OES of Battery Cathode

ICP-OES of Battery Cathode in a Structural and Chemical Characterization of Li-ion Batteries

  1. Battery performance decay is directly related to the loss of electroactive lithium. EAG developed a protocol to extract the electroactive cathode component from battery cells in various charging states or after certain number of charging/discharging cycle.
  2. ICP-OES technique to accurately determine the elemental composition of the cathode. Being an easily ionized species, lithium assay is challenging and needs to executed with a protocol to factor in this impact .
  3. Table above shows the extracted cathode composition, including lithium and transition metal content, in this case Mn, as determined by our high performance ICP-OES technique.
  4. The technique enables one to accurately track the slightest Lithium content change (as lower as 1% relative change).

 

XRD Phase Identification of Cathode

XRD Phase ID of Cathode in a Structural and Chemical Characterization of Li-ion Batteries

FTIR Spectrum – Separator

FTIR Spectrum in a Structural and Chemical Characterization of Li-ion Batteries

Separator also contains:

  • Organic carbonates similar to ethylene and diethyl carbonate
  • Amide (1635 cm-1)
  • NH and/or OH containing species (3638 and 3447 cm-1)

High Resolution XPS Spectra

High resolution XPS spectra in a Structural and Chemical Characterization of Li-ion Batteries

XPS – Comparison of Cu Spectra

XPS in a Structural and Chemical Characterization of Li-ion Batteries

XPS – Elemental Composition (Atomic %)A,B,C,D,E

Elemental composition of a Structural and Chemical Characterization of Li-ion Batteries

a     Normalized to 100% of the elements detected.  XPS does not detect H or He.

b     A dash line “-” indicates the element is not detected.

c     An “x“ indicates that the presence of Li cannot be confirmed or ruled out due to spectral interference from the overlapping Fe3p peak.

d     A question mark “?” indicates species may be present at or near the detection limit of the measurement.

e     Trace amounts of Mg and S were detected in separator (1) and the cathode.

Electrolyte Solvents by GCMS

Electrolyte solvents by GCMS in a Structural and Chemical Characterization of Li-ion Batteries

EXPERIMENTAL

Battery Cycling: Evaluate Charge/discharge of anode and cathode materials at +/- 10V.

FTIR: The two samples analyzed include a separator component and a binder component. The surface of each sample was examined in attenuated total reflection (ATR) mode using a Thermo-Nicolet 6700 Fourier Transform Infrared (FTIR) spectrometer equipped with a Continuum microscope. A Si crystal was used with a typical depth of penetration on the order of 1 micron. The analytical spot size was approximately 100 microns x 100 microns. OMNIC 8.0 software was used to perform data analysis.

TEM: TEM-ready sample was prepared using the in situ FIB lift out technique on an FEI Strata Dual Beam FIB/SEM. The sample was capped with Ir layer followed by FIB e-beam and i-beam deposited Pt over the targeted area prior to FIB milling. The sample was imaged with a FEI Tecnai Osiris TF-20 FEG/TEM operated at 200kV in bright-field TEM mode and High angle annual dark field (HAADF) STEM modes. EDX maps were obtained in STEM mode using a nominal 2nm electron beam and Bruker 4SDD detector on FEI Tecnai Osiris ChemiSTEM system.

XRD: All data  was acquired on a Bruker GADDS 2-D area detector with Cr x-ray source (λ=2.28973Å)

SEM: Cross section samples were  prepared by ion milling and then coated with Ir to reduce charging.

XPS: X-ray Photoelectron Spectroscopy is used to determine quantitative atomic composition and chemistry.  XPS works by irradiating a sample with monochromatic X-rays, resulting in the emission of photoelectrons whose energies are characteristic of the elements and their chemical/oxidation state, and the intensities of which are reflective of the amount of those elements present within the sampling volume. Photoelectrons are generated within the X-ray penetration depth (typically many microns), but only photoelectrons within the top ~50-100Å are detected (see Angle Resolved XPS below for more details). Analyzed region is 1400umx 3000um. Detection limits are approximately 0.05 to 1.0 atomic %.

GCMS: A glass syringe was used to inject tetrahydrofuran “THF” directly into the battery, followed by removal of the solvent with that same syringe. This process was repeated until ~0.5 mL was recovered. The recovered extract was injected directly in the GCMS.

ICP-OES: Inductively Coupled Plasma  analytical techniques can quantitatively measure the elemental content of a material from the ppt to the wt% range. Solid samples are dissolved or digested in a liquid, usually an acidic aqueous solution. Solution is then sprayed into the core of and inductively coupled argon plasma, which can reach temperatures of approximately 8000°C. At such high temperature, all analyte species are atomized, ionized and thermally excited, and they can then be detected and quantified with an emission spectrometer (ICP-OES).

To enable certain features and improve your experience with us, this site stores cookies on your computer. Please click Continue to provide your authorization and permanently remove this message.

To find out more, please see our privacy policy.