Industries
Services

Pharmaceutical & Biopharmaceutical Development Services

EAG brings unparalleled expertise to the development and commercialization of small molecule drugs, biopharmaceuticals, antibody-drug conjugates (ADCs), drug-device combination…

EAG brings unparalleled expertise to the development and commercialization of small molecule drugs, biopharmaceuticals, antibody-drug conjugates (ADCs), drug-device combination products and other therapies. From designing IND-enabling studies to delivering full CMC analytical and QC support, we join your R&D team as a true partner. EAG scientists take time to understand both your commercial goals and the unique characteristics of your compound. We provide expert guidance to balance regulatory expectations with expediency and cost, and approach technical challenges with flexibility and resolve.

Materials Testing & Analysis

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity…

When it comes to understanding the physical structure, chemical properties and composition of materials, no scientific services company offers the breadth of experience, diversity of analytical techniques or technical ingenuity of EAG. From polymers to composites, thin films to superalloys—we know how to leverage materials sciences to gain a competitive edge. At EAG, we don’t just perform testing, we drive commercial success—through thoughtfully designed investigations, technically superior analyses and expert interpretation of data.

Environmental Testing & Regulatory Compliance

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of…

Having helped develop the test methods that shape current regulatory guidelines, EAG chemists, biologists and toxicologists have evaluated the environmental impact of thousands of active ingredients and formulations—from pesticides and pharmaceuticals to industrial chemicals and consumer products. Whether you are exploring “what if” scenarios, registering a new active ingredient or formulation, responding to a data call-in or seeking to understand the latest guidance, turn to EAG for technical excellence, sound advice, GLP-compliant study execution and expert interpretation.

Microelectronics Test & Engineering

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human…

Whether connecting the internet of things, guiding surgical lasers or powering the latest smart phone, integrated circuits and microelectronics touch nearly every aspect of human life. In the world of technology, innovation and continuous improvement are imperatives—and being able to quickly and reliably test, debug, diagnose failures and take corrective action can make the difference between a doomed product launch and building a successful global brand. EAG offers you the world’s largest and most diverse collection of specialized analytical instrumentation, capacity to perform a variety of microelectronic tests in parallel, and the multi-disciplinary expertise required to draw true insight from data.

Custom Synthesis & Radiolabeling

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical…

No contract service provider has more experience performing custom synthesis and producing isotopically labeled compounds to support product development in life science, chemical and related industries than we do. From 14C and 3H radiolabeled clinical trial materials synthesized under cGMP, to stable-labeled active ingredients for metabolism and environmental fate/effects testing, turn to EAG. We have extensive experience with multi-step and other complex synthesis projects, and our comprehensive, in-house analytical services ensure quick turnaround of purity and structural confirmation.

Crop Biotechnology & Development

EAG combines biotechnology and protein characterization expertise with more than 50 years' experience analyzing chemical compounds in plant and environmental matrices to address…

EAG combines biotechnology and protein characterization expertise with more than 50 years’ experience analyzing chemical compounds in plant and environmental matrices to address the growing needs of the biotechnology crop industry. We offer a wide range of techniques required to fully characterize the event insertion and expressed proteins, as well as the various studies required to confirm the food, feed and environmental safety of products that represent the trait. From early-stage protein confirmation to GLP-compliant EDSP and allergenicity testing, we help you make faster, more informed development decisions and comply with evolving global regulations of genetically engineered crops.

Litigation Support & Expert Testimony

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes,…

When you need solid science and investigative engineering to address product failures, inform legal strategy, protect intellectual property or address product liability disputes, turn to EAG. We’ve provided technical consulting, analysis and expert testimony for hundreds of cases involving the aerospace, transportation, medical device, electronics, industrial and consumer product industries. Our team of experts understands the legal process and your need for responsiveness, effective communication, scientifically defensible opinion and confidentiality. From professional consulting to data review to trial preparation and expert witness testimony, ask EAG.

Techniques

Chromatography

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer…

Using an array of advanced separation techniques and innovative technology, we conduct highly precise analytical chromatography for various industries. Whether you want a closer look at the purity of your pharmaceutical or need to better understand an agrochemical’s components, EAG has the expertise to separate and evaluate any compound.

Mass Spectrometry

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and…

Need to evaluate the molecular structure of a compound or identify its origins? EAG knows how. With state-of-the-art tools, we can separate, vaporize and ionize the atoms and molecules in almost any pure or complex material to detect and obtain mass spectra of the components. We rely on decades of experience in mass spectrometry to provide our clients with precise analyses and the best detection limits.

Imaging

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images…

EAG is a world leader in high-resolution imaging down to the atomic level. We offer unmatched analytical know-how, generating extremely detailed surface and near surface images for various industries, from consumer electronics to nanotechnology. Using state-of-the-art equipment and innovative techniques, we conduct expert imaging to aid in failure analysis, dimensional analysis, process characterization, particle identification and more. If you want to investigate a material with angstrom scale resolution, you can count on EAG to get the job done quickly and precisely.

Spectroscopy

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and…

EAG offers a vast array of spectroscopic techniques to clients in various industries, from defense contractors to technology pioneers. We combine unparalleled expertise and methodology with cutting-edge technology to analyze your organic, inorganic, metallic and composite materials for identification, compositional, structural and contaminant information. Whether you need expert spectroscopic analysis to improve your production process or to surmount a technical challenge, EAG is up to the task.

Physical/Chemical Characterization

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be…

Need to identify your unique material? Want to analyze the thermal properties of a sample, or measure the success of a process step? If it has to be done quickly and it has to be done right, you can count on EAG. We offer a range of adaptable techniques and innovative methods to evaluate the physical and chemical characteristics of any compound. Our highly precise testing and analytical services will improve your production process, expedite R&D and help you conquer any technical challenge.

About

A Global Scientific Services Company

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and…

One of the most respected names in contract research and testing, EAG Laboratories is a global scientific services company operating at the intersection of science, technology and business. The scientists and engineers of EAG apply multi-disciplinary expertise, advanced analytical techniques and “we know how” resolve to answer complex questions that drive commerce around the world.

Our Customers

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and…

Science and technology transcend industry boundaries, and so does demand for EAG’s expertise. We partner with companies across a broad spectrum of high-tech, high-impact and highly regulated industries. We help our customers innovate new and improved products, investigate manufacturing problems, perform advanced analyses to determine safety, efficacy and regulatory compliance, and protect their brands.

Our Company Culture

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win…

EAG’s corporate culture is firmly rooted in four guiding principles: “foster a growth mindset,” “find a better way,” “earn more loyal customers,” and “win together.” Across all of our 20+ locations, you will find a true passion for science and the power of science to improve the world we live in. Hear what some of our ~1200 scientists, engineers and support personnel say about what it means to be part of EAG Laboratories.

Careers

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you.…

EAG is growing, and we are always looking for talented, problem-solving oriented individuals to join our company. If you have a “we know how” spirit, we want to hear from you. Browse current openings now, and re-visit our careers page often.

How do you harness science to build a brand?

The Art and Science of Paint Deformulation

ARTICLE

Deformulation, or reverse engineering as it is sometimes called, refers to the breaking down of a formulation into its basic components. The idea is to be able to take the formulation generated by the deformulation work and reconstruct the original formulation to be able to achieve all the physical properties associated with the original formulation.

This is the dream, but in reality it is a very difficult task. The secret to any deformulation work is to be able to separate out components that then can be identified with the normal analytical techniques available to the chemist. Quantification of the ingredient can also be very difficult since some materials will not separate cleanly from the matrix.

A paint deformulation is especially difficult since it may contain 15 ingredients or more. Since there are several main ingredients, this means that many ingredients may be present at really low levels such as one percent or less.

Why would anyone want to do a paint deformulation? There are numerous reasons:

  1. It may be that the formulation was lost due to poor documentation.
  2. The formulator passed away and no one can read his notes, or there was a fire and the formulation was destroyed.
  3. Perhaps the researcher made a fantastic formulation but did not document the details and cannot reproduce the formulation’s performance.
  4. A former employee is now working for the competition, and you are suspicious that their new formulation is very similar to your formulation.
  5. The competition is making a similar product, and you believe they have infringed on your patent.
  6. The competition is making wild marketing claims, and you want to know if the formulation supports such claims.
  7. One aspect of the competitor’s product appears to be better than your product, and you want to identify the secret.
  8. A competitor is underpricing a product similar to yours, and you want to know if it is a similar product or if they are cheapening the product to win sales.

 

LEVELS OF PAINT DEFORMULATION

A paint formulation consists of essentially four basic components: resin, solvent, pigment, and additives. Several levels of details can be obtained depending upon how much time, effort, and money one wants to invest in the project. A first-level deformulation focuses on identifying and quantifying the major ingredients such as resin, solvents, and pigments. The additives are usually not addressed at this stage. A second-level investigation then attempts to add more details to the deformulation. These details might include more information about the type and quantity of additives. For example, surfactant type and thickening agent may be identified. A third level investigation attempts to find out all the additives and the “secret” ingredient that gives this formulation its unique properties. However, no matter how thorough the investigation is planned, it may not be possible to find every ingredient due to sensitivity and interferences in the analytical techniques.

The Art and Science of Paint Deformulation

The dried paint sample can be analyzed using Fourier transform infrared spectroscopy (FTIR). This technique acts as a fingerprint for everything in the dried paint film. Essentially, everything in the formulation gives an FTIR spectrum that is then overlaid on the spectrum of everything in the dry paint film. However, since some ingredients, such as additives, are at very low levels, they essentially become invisible to the FTIR. Therefore, since only major ingredients in the dry paint film are visible, FTIR can determine the general class of polymer present and also gives a hint as to the pigment type. The total dried paint sample can also be heated to decomposition using instrumentation such as a thermogravimetric analyzer (TGA) or ashing in a muffle furnace. Although this decomposition step removes all organic material, including the additives, it still can be a good approximation to how much resin is present and how much residue, such as pigment and inorganic fillers, are present.

The Art and Science of Paint Deformulation

The resin can be isolated quantitatively from the remainder of the formulation by drying a sample and then performing extractions with solvents that will remove and isolate the resin. A dried resin film can be analyzed by FTIR that will result in a spectrum of the resin, giving a better picture of the resin type used in the paint sample. Another technique to characterize the resin is pyrolysis gas chromatography/mass spectroscopy (pyro GC/MS). In this technique a sample of the resin is heated at about 700°C to decompose the material. The decomposition products are then separated in a GC and the components are identified by MS. For example, a typical acrylic resin might be a methyl methacrylate with some butyl acrylate and methacrylic acid added as comonomers. These monomers can be identified by pyro GC/ MS, and a rough approximation of their ratios can be determined. Solvents are usually separated, identified, and quantified against an internal standard by GC/MS. A better estimate of their percentages can be made by making and running individual standards and using GC with a flame ionization detector (FID) to quantify the solvents. If water is part of the solvent system, then other methods may be required, such as Karl Fisher titration or GC with thermal conductivity detector (TCD), to quantify the water content. Pigments can be identified using a combination of techniques. The ash residue can be studied by scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDXA) to determine elements present. These initial data can then be verified with X-ray diffraction (XRD) to identify specific pigment or filler components. Other techniques, such as titrations or inductively coupled plasma (ICP), may still be required in order to quantify pigment or filler, especially when there is more than one present.

Typical additives in paint include a rheological modifier (thickening agent), surfactant, dispersant, antifoam agent, antifreeze compound, and mildewcide. Additives are much more difficult to identify and quantify since they are usually present in such low quantities (less than one to five percent) and frequently have an affinity for the matrix. Solvent extraction is one method for separating additives, but this method can sometimes be unsuccessful in separating similar materials such as two types of surfactants. Other, more sophisticated methods include liquid chromatography/mass spectrometry (LC/MS). This instrument separates higher molecular weight materials, such as surfactants, and then attempts to identify them using their MS spectra. This method is very powerful in identifying unknown materials. Once the material has been identified using LC/MS, then high-performance liquid chromatography (HPLC) can be used to quantify the material.

CONCLUSION

It should be obvious that several analytical techniques are required in order to conduct a paint deformulation analysis. Running one simple test, such as FTIR, will not give one the level of information that is required. Deformulation is like working a picture puzzle. If only a few pieces are in place (i.e., a few tests), then one can get a rough idea of the total picture. However, as more tests are added, the picture becomes clearer. Eventually enough pieces are in place to satisfy the customer.

To enable certain features and improve your experience with us, this site stores cookies on your computer. Please click Continue to provide your authorization and permanently remove this message.

To find out more, please see our privacy policy.