

APPLICATION NOTE

SIMS Detection Limits of Selected Elements in Si Under Bulk Analysis Conditions

DISCUSSION

SIMS is a powerful analytical technique which allows detection of all elements from H to U with excellent sensitivities. The table provides a list of detection limits for typical dopants and impurities in Si matrix under bulk analysis conditions.

O ₂ + Primary Ion Beam Positive Ions		Cs+ Primary Ion Beam Negative Ions	
Element	DL atoms/cm ³ (ppbw)	Element	DL atoms/cm ³ (ppbw)
Не	1E+17 (286)	Н	5E+16 (36)
Li	5E+11 (0.003)	С	1E+14 (3)
В	1E+12 (0.008)	N	5E+13 (0.5)
Na	5E+11 (0.001)	0	1E+15 (12)
Mg	1E+12 (0.02)	F	1E+14 (1)
Al	5E+12 (0.1)	Р	1E+13 (0.2)
K	5E+11 (0.001)	S	2E+14 (10)
Ca	2E+12 (0.08)	CI	5E+14 (23)
Ti	1E+12 (0.03)	As	1E+13 (0.5)
Cr	3E+11 (0.01)	Ge	5E+13 (2.6)
Mn	2E+12 (0.1)	Sb	1E+13 (0.8)
Fe	1E+13 (0.4)	Au	1E+13 (1.4)
Ni	1E+14 (4)	-	-
Cu	1E+14 (4)	-	-
Zn	1E+14 (6)	-	-
Мо	1E+14 (7)	-	-
In	1E+13 (0.8)	-	-
W	5E+13 (7)	-	-