A Cell-Based Assay to Assess the Binding Activity of the Monoclonal Antibody Component of an Antibody Drug Conjugate

By Angela Kirik, Charlie Britten, Karen Havenith, Mike Whalon, Glenn Petrie, Esohe Edusogie, Mike Mulkerrin and Loretta Sukhu

EAG Laboratories, Columbia, Missouri, USA and ADC Therapeutics, Murray Hill, New Jersey, USA.

INTRODUCTION
Antibody drug conjugates (ADCs) are cancer therapeutic agents designed to direct a cytotoxic drug to cells expressing a cell-surface antigen recognized by an antibody. The antibody and drug are linked through chemistries that enable release of the cytotoxic drug upon internalization and digestion of the ADC by the cell. The efficiency of any ADC could be evaluated by cell-based Potency and Cytotoxicity Assays.

A competitive cell-based Potency assay was developed for determination of relative binding potency of newly-constructed ADC, containing monoclonal antibody against CD19 antigen, overexpressing on the surface of cancer-modified B lymphocytes, and a Pyrrolobenzodiazepine (PBD) as a cytotoxic DNA damage agent.

The assay utilized CD19 expressing Ramos cells (RA-1, ATCC CRL1596®); a SULFO-TAG® anti-CD19 antibody was used as a competitor to unlabeled ADC. Conjugated and unconjugated anti-CD19 antibodies were recognized to a similar extent by the antigen. Luminescence was measured by a Meso Scale Discovery (MSD) Sector Imager plate reader and was proportional to the competition by ADC of the binding of SULFO-TAG® antibody to the CD19 antigen.

OBJECTIVES

1. Establish and qualify a method for the determination of Binding Potency of the monoclonal Antibody component of an ADC.

METHOD

A competitive cell-based binding immunoassay with Electrochemiluminescent (ECL) detection was developed to determine relative binding potency of ADC antibody drug conjugate and antibody intermediate relative to their respective fully-characterized reference standards. The assay utilizes CD19 expressing Ramos cells (RA-1). MSD plates are coated for at least one hour with Concanaavalin A. Reference standard, QC and test samples are prepared in dilution buffer containing SULFO-TAG labeled ADCs (anti-CD19), which is used as a competitor for unlabeled ADC. RA-1 cells are pre-incubated with diluted reference standard, QC and test samples at room temperature (RT) for at least 1 hour. Plates then washed 3 times, and content transferred to the Concanaavalin A coated plates where incubated for at least two hours at RT. The plates are washed and read buffer is added to the wells. Signals are detected following the application of a voltage to the plate electrodes within the MSD Sector Imager 6000 (Meso Scale Discovery), causing the bound SULFO-TAG to emit light of which the intensity is measured by the Sector Imager.

METHOD QUALIFICATION

During method qualification System Suitability, Accuracy, Precision, Specificity, Linearity and Range were examined.

System Suitability: System Suitability pass in all qualification assays: %CV ≤25%, R2>0.99, A, B, D values 75%-125% of Reference Standard.

Accuracy: Accuracy was tested by preparation of the ADC at five

<table>
<thead>
<tr>
<th>Theoretical Potency (%)</th>
<th>Measured Potency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADC</td>
</tr>
<tr>
<td>Relative Potency</td>
<td>%CV</td>
</tr>
<tr>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>150</td>
<td>161</td>
</tr>
<tr>
<td>200</td>
<td>187</td>
</tr>
</tbody>
</table>

Table 1. Standard solutions prepared at five levels across a range corresponding to the theoretical working concentration.
levels across a range corresponding to 200%, 150%, 100%, 75% and 50% (each percent denoted as Test Material and 100% as Assay Control) of Theoretical working concentration. Accuracy is assessed as percent recovery, or measured Relative Potency divided by the Theoretical Potency, multiplied by 100. The ADC test solutions were diluted to the five target concentration levels and compared with the ADC or Antibody Intermediate prepared at the 100%. Accuracy was calculated assuming all preparations were at the Theoretical concentrations. Each of five concentration levels was tested three times. Recoveries for individual runs were between 94% and 114% of Theoretical concentrations, and the coefficient of variation between the Recovery data of each tested level was between 1 and 16 percent.

INTRA ASSAY PRECISION (REPEATABILITY)

The Precision of an analytical procedure is usually expressed as the variance, standard deviation or coefficient of variation of a series of measurements and includes repeatability (intra assay variability) and intermediate precision (inter assay variability).

Intra Assay Precision was assessed using Reference Standard (RS) and Assay Control (AC) ADC and Ab. Intermediate solutions each at 100%, tested by the same Analyst on the same day (repeatability) on three independently prepared plates for each. Intra Assay Precision for the Antigen Binding Assay was analyzed by determining the percent CV of the Relative Potency of the Assay Control from three individual plates run on the same day by a single analyst.

INTERMEDIATE ASSAY PRECISION

The Intermediate Assay Precision was determined for the Antigen Binding assay for five levels of potency tested experimentally for ADC as well as for Ab. Intermediate. This was done by calculating the percent CV of Relative Potency values from three individual experiments performed at each level and each tested article (ADC and Ab. Intermediate) to assess 200%, 150%, 75%, and 50% potency levels by two analysts on different days (2 sets of assays were done by Analyst 1 and one set by Analyst 2 for each tested article). The Relative Potency for the 100% Assay Control was used to assess the percent CV for 100% potency level; six individual runs were used in this determination.

SPECIFICITY

Specificity of the method was assayed by use of non-specific anti-CD25 antibody drug conjugate. As shown on the graph, non-

Table 2. Intra Assay Precision for the Antigen Binding Assay was analyzed by determining the percent CV of the Relative Potency of the Assay Control from three individual plates run on the same day by a single analyst.

<table>
<thead>
<tr>
<th>Analyst 1</th>
<th>%Relative Potency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADC</td>
</tr>
<tr>
<td>Plate 1</td>
<td>105</td>
</tr>
<tr>
<td>Plate 2</td>
<td>97</td>
</tr>
<tr>
<td>Plate 3</td>
<td>118</td>
</tr>
<tr>
<td>Mean</td>
<td>107</td>
</tr>
<tr>
<td>%CV</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3. The Relative Potency for the 100% Assay Control was used to assess the percent CV for 100% potency level; six individual runs were used in this determination.

<table>
<thead>
<tr>
<th>Analyst</th>
<th>200%</th>
<th>150%</th>
<th>100%</th>
<th>75%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADC</td>
<td>Ab. Inter.</td>
<td>ADC</td>
<td>Ab. Inter.</td>
<td>ADC</td>
</tr>
<tr>
<td>Analyst 1</td>
<td>197</td>
<td>196</td>
<td>133</td>
<td>165</td>
<td>104</td>
</tr>
<tr>
<td>Analyst 1</td>
<td>177</td>
<td>192</td>
<td>166</td>
<td>147</td>
<td>109</td>
</tr>
<tr>
<td>Analyst 2</td>
<td>186</td>
<td>198</td>
<td>184</td>
<td>153</td>
<td>88</td>
</tr>
<tr>
<td>Mean</td>
<td>187</td>
<td>195</td>
<td>161</td>
<td>155</td>
<td>102</td>
</tr>
<tr>
<td>%CV</td>
<td>5</td>
<td>1</td>
<td>16</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
A Cell Based Assay to Assess the Binding Activity of the Monoclonal Antibody Component of an Antibody Drug Conjugate

LINEARITY AND RANGE

Linearity was evaluated to test the ability of the method to accurately distinguish and quantitate the Relative Potency between and throughout a range of potencies. Five levels of potency for the ADC and Ab. Intermediate; namely, 200%, 150%, 100%, 75%, and 50% were determined and linearity in the range of 50%-200% was seen. The experimentally acquired mean relative potency of each level relative to their theoretical concentrations was charted using linear regression statistics. The results are illustrated in the graph. Linearity was achieved as shown by the coefficient of determination, R2 = 0.98 for ADC and 1.00 for Ab. Intermediate.

EVALUATION STABILITY OF ADC AND ANTIBODY INTERMEDIATE USING ANTIGEN BINDING ASSAY

Table 4. Collected results of two years’ worth of stability evaluations of ADC and Antibody Intermediate using Antigen Binding Assay.

<table>
<thead>
<tr>
<th>Time Point</th>
<th>ADC Relative Potency (Mean of 3 assays), %</th>
<th>%CV</th>
<th>Ab. Intermediate Relative Potency (Mean of 3 assays), %</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>102</td>
<td>11</td>
<td>108</td>
<td>18</td>
</tr>
<tr>
<td>0.5M</td>
<td>102</td>
<td>9</td>
<td>95</td>
<td>21</td>
</tr>
<tr>
<td>1M</td>
<td>103</td>
<td>9</td>
<td>94</td>
<td>18</td>
</tr>
<tr>
<td>3M</td>
<td>114</td>
<td>6</td>
<td>104</td>
<td>20</td>
</tr>
<tr>
<td>6M</td>
<td>98</td>
<td>15</td>
<td>98</td>
<td>23</td>
</tr>
<tr>
<td>9M</td>
<td>92</td>
<td>18</td>
<td>109</td>
<td>5</td>
</tr>
<tr>
<td>12M</td>
<td>99</td>
<td>23</td>
<td>99</td>
<td>23</td>
</tr>
<tr>
<td>18M</td>
<td>97</td>
<td>12</td>
<td>105</td>
<td>2</td>
</tr>
<tr>
<td>24M</td>
<td>101</td>
<td>18</td>
<td>110</td>
<td>8</td>
</tr>
</tbody>
</table>

Figure 1. Specificity of the method assayed by use of a non-specific anti-CD25 antibody drug conjugate.

Specific antibody showed any specific binding and Potency was outside ±50% relative to the Reference Standard.

Figure 2. The experimentally-acquired mean relative potency of each level charted relative to their theoretical concentrations

The Antigen Binding assay was used for the ADC and Ab. Intermediate stability study. Three assays were run for each time point for ADC as well as Ab. Intermediate. The table above shows collected results of two years stability evaluation.

CONCLUSIONS:

- A number of critical assay parameters were evaluated during qualification exercises; including Accuracy, Precision, Specificity, Linearity and Range.
- The method has been qualified for assessment of the relative binding potencies of an ADC or its corresponding Antibody Intermediate under CGMP guidelines and regulations.
- Data obtained during the course of method qualification and analysis of system suitability criteria tracked through the course of a two years stability study demonstrated the assay’s suitability and robustness for determining the potency of binding activity.