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Machine-Learning Assisted Analysis of Battery Electrode by PFIB-SEM Tomography
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« Demonstrated how morphological information can be extracted from imaging dataset.
* Provided possibility of an end-to-end solution to facilitate electrode’s development.
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Though the tomography techniques are well developed, gaining quantitative information (training:test = 8:2) ! J : (StarDist)
from the representative 3D volume data is still demanding. Differentiating and extracting S g : | /
individual components of the battery from imaging dataset is one challenge, as the pixel ! Segmented |
value difference between the components can be minimal. On the other hand, statistical carbon binder |
analysis of the active materials can boost the understanding of the electrode’s structure- ! domain : ( 4 h g A
performance relationship, but it is challenging. Here, using a cycled commercial battery : 7 SEParEtEd > Separated p—  Statistical analysis
electrode, we present a machine-learning assisted imaging analysis approach to reveal | - . particle (2D) particle (3D) )
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Instance segmentation was conducted with StarDist, a detection method for star-convex
shapes. Six images were labeled and used as training set. Data augmentation, including

MULTI-PHASE SEGMENTATION random flipping and intensity changes, was applied. As results, more than 1,000 particles

Four architectures were trained to achieve the multi-phase segmentation task. Both weighted were extracted out as individual instances.
DATA COLLECTION loss function and unweighted loss function were tried to deal with the imbalanced data. Also,
Sample is an electrode stack from a used commercial lithium-ion battery. The sample three different kinds of training dataset were compared: image patches, completed images and
was mechanically cut and polished before imaging. mixed patches and completed images. The ones trained with completed images provide the
best results. The loUs were calculated by comparing the prediction with the 10 labels.
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70~ o ___ direction into current collector. from the carbon binder domain and exposed to the pore. A ML-aided pipeline was developed to reveal the 3D morphologic and structure information of
60 1 - Edgesol - T individual particles within a thick battery cathode via PFIB-SEM. PFIB-SEM tomography
. materials pore combined with ML data processing is a versatile technique and can be applied to many other
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