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INTRODUCTION
During battery cycling, particle morphological change, including cracking and 
disintegration, can lead to cell degradation [1]. These morphological degradations can 
range from micrometers to nanometers in scale and often require three-dimensional (3D) 
characterization. Plasma based focused ion beam-scanning electron microscopy (PFIB-
SEM) tomography can access representative volume efficiently, while it is able to provide 
dataset with nm scale spatial resolution and hundreds of µm field of view [2]. 
Though the tomography techniques are well developed, gaining quantitative information 
from the representative 3D volume data is still demanding. Differentiating and extracting 
individual components of the battery from imaging dataset is one challenge, as the pixel 
value difference between the components can be minimal. On the other hand, statistical 
analysis of the active materials can boost the understanding of the electrode’s structure-
performance relationship, but it is challenging. Here, using a cycled commercial battery 
electrode, we present a machine-learning assisted imaging analysis approach to reveal 
its morphological properties with statistical significance. Our contributions are:
• Built a processing pipeline for a tomography dataset of battery cathode.  
• Demonstrated how morphological information can be extracted from imaging dataset.
• Provided possibility of an end-to-end solution to facilitate electrode’s development. 

DATA COLLECTION
MULTI-PHASE SEGMENTATION

CONCLUSIONS
A ML-aided pipeline was developed to reveal the 3D morphologic and structure information of 
individual particles within a thick battery cathode via PFIB-SEM. PFIB-SEM tomography 
combined with ML data processing is a versatile technique and can be applied to many other 
complicated materials systems where conventional segmentation methods fall short. 
Potentially, this method can be applied to understand local heterogeneity within one battery to 
dig out the cell degradation mechanism. Additionally, it can also be used to compare the 
particle morphology of the same type of batteries before and after cycling to find out the 
courses to capacity fade. 

PARTICLE SEPARATION

DATA PROCESSING SCHEME 

Sample is an electrode stack from a used commercial lithium-ion battery. The sample 
was mechanically cut and polished before imaging. 

o Tool: ThermoFisher Helios 5 PFIB Uxe
o Backscattered electron image 
o Physical Slice Thickness: 200 nm
o Voxel size of the collected dataset: 132 

nm x 122 nm x 200 nm
o Processed volume: 136.6 µm x 47.0 µm x 

45.6 µm

Example cross-section image

* pre -processed (rotate and crop) Scale bar: 10 µm

Imaging conditions

Imaging labeling
10 images were labeled for multi-phase segmentation. Data is imbalanced. Segmentation 
based on pixel values deference between components can be challenging. 

Best models:
*optimizer-Adam, learning rate-0.01, loss function – 
cross entropy 
 U-Net: 

trained with unweighted loss function
 UNet++: 

trained with weighted loss function
 PSPNet: 

trained with unweighted loss function
 SegNet: 

trained with weighted loss function

Results

Four architectures were trained to achieve the multi-phase segmentation task. Both weighted 
loss function and unweighted loss function were tried to deal with the imbalanced data. Also, 
three different kinds of training dataset were compared: image patches, completed images and 
mixed patches and completed images. The ones trained with completed images provide the 
best results. The IoUs were calculated by comparing the prediction with the 10 labels. 
Eventually, the results of the best models in their own kinds were similar. The result of U-Net 
model was chosen for further analysis. 

Volume fraction occupied by different components:
  •active materials – 76.61%  •current collector – 11.95 %  •carbon binder domain – 4.64%  •pore - 6.80%  

• Components distribute uniformly through the 
direction into current collector. 
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Example region Manual label

*33.6 µm x 17.8 µm
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active materials current collector
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Results

Instance segmentation was conducted with StarDist, a detection method for star-convex 
shapes. Six images were labeled and used as training set. Data augmentation, including 
random flipping and intensity changes, was applied. As results, more than 1,000 particles 
were extracted out as individual instances. 

• Properties of specific active material particles• Active materials size distribution

Component attached to 
active materials  surface

Percentage

Pore 66.41%
Carbon binder domain 29.50%

• After cycling, most of the active materials are detached 
from the carbon binder domain and exposed to the pore. 

particle tracking

*30.6 µm x 33.7 µm

*example sub volume: 29.3 µm x 28.8 µm x 19.6 µm
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