Battery Cycling: Evaluate Charge/discharge of anode and cathode materials at +/- 10V.
FTIR: The two samples analyzed include a separator component and a binder component. The surface of each sample was examined in attenuated total reflection (ATR) mode using a Thermo-Nicolet 6700 Fourier Transform Infrared (FTIR) spectrometer equipped with a Continuum microscope. A Si crystal was used with a typical depth of penetration on the order of 1 micron. The analytical spot size was approximately 100 microns x 100 microns. OMNIC 8.0 software was used to perform data analysis.
XRD: All data was acquired on a Bruker GADDS 2-D area detector with Cr x-ray source (λ=2.28973Å)
SEM: Cross section samples were prepared by ion milling and then coated with Ir to reduce charging.
XPS: X-ray Photoelectron Spectroscopy is used to determine quantitative atomic composition and chemistry. XPS works by irradiating a sample with monochromatic X-rays, resulting in the emission of photoelectrons whose energies are characteristic of the elements and their chemical/oxidation state, and the intensities of which are reflective of the amount of those elements present within the sampling volume. Photoelectrons are generated within the X-ray penetration depth (typically many microns), but only photoelectrons within the top ~50-100Å are detected (see Angle Resolved XPS below for more details). Analyzed region is 1400umx 3000um. Detection limits are approximately 0.05 to 1.0 atomic %.
GCMS: A glass syringe was used to inject tetrahydrofuran “THF” directly into the battery, followed by removal of the solvent with that same syringe. This process was repeated until ~0.5 mL was recovered. The recovered extract was injected directly in the GCMS.
ICP-OES: Inductively Coupled Plasma analytical techniques can quantitatively measure the elemental content of a material from the ppt to the wt% range. Solid samples are dissolved or digested in a liquid, usually an acidic aqueous solution. Solution is then sprayed into the core of and inductively coupled argon plasma, which can reach temperatures of approximately 8000°C. At such high temperature, all analyte species are atomized, ionized and thermally excited, and they can then be detected and quantified with an emission spectrometer (ICP-OES).