Advanced Microscopy Services

Advanced microscopy techniques such as SEM (Scanning Electron Microscopy)TEM (Transmission Electron Microscopy) and Dual Beam SEM are essential techniques to investigate sample microstructure, morphology, particle size, particle coatings and defects. These techniques often employ elemental mapping capabilities such as EELS (Electron Energy Loss Spectroscopy) and EDS (Energy Dispersive X-Ray Spectroscopy), which provide valuable information about elemental composition and location/distribution.

EAG offers a broad range and large installed base of different microscopy tools and services to match your application, ranging from process development to failure analysis. In addition to providing high resolution imaging, our analytical capability makes us a unique partner that can help you during research, development, and analysis of failures.

Advanced Microscopy Services

Advanced Microscopy Examples

Microscopy techniques can be used to characterize many types of defects. These include:

  • Metal migration: FIB cross-section and investigation by STEM/EDS
  • Voids: FIB cross-section and investigation by SEM
  • Particles: Surface imaging or FIB cross-section to investigate size, chemistry and position in the layer stack
  • Cracks and Delaminations: Small area FIB cross-sections or large area argon ion milled cross sections determine the location and of the delaminated interface. If needed, the interface chemistry can then be determined by TEM micro-analysis.
  • Thickness and Uniformity: FIB cross-section and investigation by SEM

The types of materials tested using advanced microscopy techniques:

  • Nanoparticles
  • Alloys and metals
  • Thin films
  • Coatings on glass, silicon or carbon-based substrates
  • Ceramics
  • Composite materials
  • IC devices
  • Aluminum anodization

Industrial Applications of Advanced Microscopy

There has been a rapid emergence of new technologies, which has enabled new industries such as facial recognition, autonomous driving, virtual reality, and 5G communication. These growth areas typically include FinFET, VCSEL, and III/V compound semiconductors. For our Advanced Microscopy team, the materials indicate hetero-epitaxy, cubic and hexagonal lattices, where failures in devices often have complicated 3D structures.

Recent development of FIB technology enables high-precision TEM sample preparation of 3D logic and memory devices. This example shows a HAADF image of a gate cut from a 22 nm generation 3D FinFET device with LGate~30 nm, as seen in a recent paper by the EAG Laboratories Advanced Microscopy team that was presented at Microscopy and Microanalysis 25 (S2): 690-691 (2019) “Industrial Applications of Electron Microscopy: A Shared Laboratory Perspective”

Another interesting example is the picture above that shows an aluminum nitride/silicon carbide interface observed using HR-STEM imaging.

In this example above, we observe GaN Dislocation Typing: Burgers Vector Analysis with Large-Angle Convergent-Beam Electron Diffraction (LACBED)

Typical Advanced Microscopy Techniques

Would you like to learn more about using Advanced Microscopy Services?

Contact us today for your Advanced Microscopy Services needs at +1 800-366-3867 or please complete the form below to have an EAG expert contact you.

To enable certain features and improve your experience with us, this site stores cookies on your computer. Please click Continue to provide your authorization and permanently remove this message.

To find out more, please see our privacy policy.